9/7/25, 7:54 PM
Rajesh Parajuli

. +9779847546279

Home About Me

Syllabus

Online Compiler

Introduction of Programming
Language

Assembler, Compiler and

Interpreter

Syntax & Semantics

Eeatures of Good Programme
Unit2 History of C Program
Basic Structure of C program
Character Set, Token &
Comments

Variable

Datatypes

Type Conversion / Type Casting
Operators

https://parajulirajesh.com.np/c-programming/

Resume

C Programming - parajulirajesh.com.np

Services Portfolio

Contact Me

BICTE

Programming concept with C

Assignments

Assignment 1
Assignment 2

ssignment 3

ssignment 4

>

>

Control structure
Selective Structure
Looping_Structure
Nested Loop
Loop interrupts
Unit 4 Function

Function prototype, definition
and call

Different ways of using function

Call by value call by reference
Recursion Function

c
=]

=
—

c
=

=
N

c
>

=4
(o8]

c
=]

=
IN

Concept of array

Array declare, access and
initialization
Multi-dimensional Array,
Concept of Pointer

Pointer Address, deference,

declaration, assignment,
initialization

Pointer Arithmetic

Array and Pointer

Difference between Malloc and

Calloc

String
String_Function in C
Pointer and String

Computer Science Grade 10

Computer Science Grade 12

Study Materials

Unit 6 Structure and Union
Initializing, accessing member of
structure

Array of structure

Pointer of structure

Union

Difference between structure
and union

Unit 7 Concept of File handling
File Access Methods
Functions of file handling:
fopen(), fclose(),fflush(),
freopen()

Formatted input output

direct input output

Random File Access

Error handling

File operation

1/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

What is Program?

The program is the set of instructions that command the computer to perform a particular operation or a specific task.
e Instruction is a statement.

o A statementis an instruction to do only one task.
e A group of statements is composed together to form a program.

Unit 1 Introduction of Programming Language.

A programming language is a computer language that is used by programmers (developers) to communicate with computers. It
is a set of instructions written in any specific language (C, C++, Java, Python) to perform a specific task.

e A programming language is a language that allows people to write specific commands to be executed on a computer.
¢ A programming language is mainly used to develop desktop applications, websites, and mobile applications.
e Most commonly used Programming Language are Python, JAVA, C, C++, C#, RUBY, PHP ... etc.

Types of Programming Language

1. Low-level Language
2. High Level Language

https://parajulirajesh.com.np/c-programming/ 2/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Types of programming
Language

High-level
language

3rd GL

rocedural oriented

easyness, understandabj n@g@) of the
p lasiguage er does not ung¢ \anguags ts directly, so translator i L@gi_ P BEsTesCobol

o Seormputerexecuable forma ond GL 4th GL

Low-lavel |2 ngEuRER onverts instructions written in assembly or h into

Why use Translajef?

hd?..':hiﬂﬁ“ l.E‘.'ﬁ‘-'. assemb|y orh Assembly leVEl

Tyl %F&%Q&A}é‘t'on use mnemonics form object oriented language
bitsb(O's and1's) symbolic langugae eg: Java, c++, C#, PHP
ssembpjer, 2 -

@grﬂﬁﬁer"f compiler & interpreter § Acsembler is need to translate 5GL

iMachine executable eg ADD, SUB, DIV
’]

Natural language

As$embler: Assembler is a translator that cpnverts the code of the assembly language (Sourde Q&ie&ﬁ@h@ﬁachine

executible language machine language (Object Code). When assembler completed it converted process then only it started to
execute the program.

Compiler: A Compiler is a translator which translates the complete high level program (Source Code) into the machine code
(object code) at once if the program doesn’t contain syntax errors. Programming languages like C, C++, Java use the compiler.

Interpreter: An interpreter is a language translator which translates high-level language into the machine language at line at a
time and executes the line of the program after it has been translated. It translates statements line by line.

Differences between Compiler and interpreter?

Compiler Interpreter

Interpreter Translates one line or single statement of a program into

Compiler translates the whole program into object code at a time. . .
object code at a time.

https://parajulirajesh.com.np/c-programming/ 3/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Translating process is faster Translating process is slower

It stores the converted machine code from your source code program . .
It never stores the machine code at all on the disk.

on the disk.

The compiler shows the complete errors and warning messages at An interpreter reads the program line-by-line; it shows the error if
program compilation time. So it is not possible to run the program present at that specific line. You must have to correct the error first
without fixing program errors. Doing debugging of the program is to interpret the next line of the program. Debugging is
comparatively complex while working with a compiler comparatively easy while working with an Interpreter.

Examples of compiler based programming language are C, C++, Java,

Examples of Interpreter based programming are BASIC, C#, PHP
COBOL, Pascal, FORTRAN

Syntax
In a programming language, Syntax defines the rules that govern the structure and arrangement of keywords, symbols, and other

elements. Syntax doesn’t have any relationship with the meaning of the statement; it is only associated with the grammar and
structure of the programming language.

A line of code is syntactically valid and correct if it follows all the rules of syntax.
Syntax does not have to do anything with the meaning of the statement.

Syntax errors are easy to catch.

Syntax errors are encountered after the program has been executed

Semantics

Semantics refers to the meaning of the associated line of code and how they are executed in a programming language.
semantics helps interpret what function the line of code/program is performing.

« If there is any semantic error and even when the statement has correct syntax, it wouldn't perform the function that was
intended for it to do. Thus, such errors are difficult to catch.
e Semantics are encountered at runtime.

Programming Design Tools
Program design Tools are the tools that are used to design a program before it actually developed. Program design tools are

used by the developers. Some program design tools are: Algorith, Flow Charts, Pseudo Code, Data flow Diagram(DFD), Usecase
Diagram... etc.

Algorithm: An algorithm is the sequence of steps that needs to be followed in order to acheive certain task. An algorithm is the
fininte set of step by step set of statements that is used to solve a particular problem.

https://parajulirajesh.com.np/c-programming/ 4/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

e |t is written in simple human readable English Language.

An Algorithm should have the following properties:

1. It should have an input.

2. The steps mentioned in an algorithm can be executable by the computer
3. Each and every instruction should be in a simple language.

4. The number of steps should be finite.

5. It should not depend on a particular computer language or computer.

6. The algorithm should give an output after executing the finite numbers of steps.

Example of an algorithm:

1. Find the sum of two numbers.

step 1: START

Step2: Read the two numbers A and B.

Step3: Add the number A and B and store in S. or S=A+B.
Step4: Display D or Print D.

Step5: Stop.

2. Find the simple interest (SI).

Step1: Start.

Step2: Read the principal, rate, and time.

Step3: Multiply principal, rate and time.

Step4: Divide the product by 100 and store it in SI.

StepS: Print SI

Step6: END

3. Write an algorithm to Print 1 to 20 and also make flowchart.

Step1: Start.

https://parajulirajesh.com.np/c-programming/

5/84

9/7/25, 7:54 PM

Step2: Initialize X as 0,

Step3: Increment X by 1,

Step4: Print X,

C Programming - parajulirajesh.com.np

Step5: If X is less then 20 then repeat from step 2 until X=20.

Step6: Stop.

Flowchart

A flowchart is a pictorial representation of an algorithm. Flowchart is a diagrammatic representation of sequence of logical steps of a program.
Flowcharts use simple geometric shapes to depict processes and arrows to show relationships and process/data flow.

https://parajulirajesh.com.np/c-programming/

Initialize X< 0

Increment X by 1

/ PrintX /

YES _

6/84

9/7/25, 7:54 PM

Flowchart to find a given number is odd or even.

C Programming - parajulirajesh.com.np

Input Number

“0dd Number™

Display

Symbol Name Functien
Y A val TERrese: 5 :
Startierd An oval represents a start
/ or end point
Aline is a connector that
. shows relationships
_.‘ Arrows
between the
representative shapes
f J
; A parallelogram
f ! InputiCutput = P Lof arem :
represents input or output
rectangle repre 5
Erisass A ec.anJIg &|:r sents a
process
T
o e A diamond indicates a
Decision

decision

https://parajulirajesh.com.np/c-programming/

Symbol

Symbol

Name

Start/Stop

Process

Input/ Output

Decision

Arrow

On-page
Connector

Purpose

Used at the beginning and end of the
algorithm to show start and end of the
program.

Indicates processes like mathematical
operations.

Used for denoting program inputs and
outputs.

Stands for decision statements in a
program, where answer is usually Yes
or No.

Shows relationships between different
shapes.

Connects two or more parts of a

flowchart, which are on the same page.

7/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

Off-page Connects two parts of a flowchart
Connector which are spread over different pages.

4. Determine Whether A Student Passed the Exam or Not:

Algorithm

e Step 1: Input grades of 4 courses M1, M2, M3 and M4,
o Step 2: Calculate the average grade with formula “Grade=(M1+M2+M3+M4)/4"

o Step 3: If the average grade is less than 60, print “FAIL", else print “PASS”.

= =

F'

(START)
; Input
ML M2 M3. M4

-

‘ Grade = (M1+M2+M3+M4)/4

|

— e B —

YES\} > r
< If Grade < 60 -

i

Differences between Algorithm and Flowchart?

Algorithm

It is a procedure for solving problems.

https://parajulirajesh.com.np/c-programming/

Flowchart

It is a graphic representation of a process.

8/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

The process is shown in step-by-step instruction. The process is shown in block-by-block information diagram.
It is complex and difficult to understand. It is intuitive and easy to understand.

It is convenient to debug errors. It is hard to debug errors.

The solution is showcased in natural language. The solution is showcased in pictorial format

It is somewhat easier to solve complex problem. It is hard to solve complex problem.

It costs more time to create an algorithm. It costs less time to create a flowchart.

Features of Good Programme.

| Correctness | | Completeness | | Efficiency

Flexibility | | Consistency | Maintainability

1. Correctness: Program design should be correct as per requirement.

2. Completeness: The design should have all components like data structures, modules, and external interfaces, etc.
3. Efficiency: Resources should be used efficiently by the program.

4. Flexibility: Able to modify on changing needs.

5. Consistency: There should not be any inconsistency in the design.

6. Maintainability: The design should be so simple so that it can be easily maintainable by other designers.

Portability

A program should be supported by many different computers. The program should compile and run smoothly on different platforms. Because of
rapid development in hardware and software, platform change is a common phenomenon these days. So, portability is measured by how a
software application can be transferred from one computer environment to another without failure. A program is said to be more portable if it is
easily adopted on different computer systems. Subsequently, if a program is developed only for a particular platform, its life expectancy is
seriously compromised.

Maintainability

https://parajulirajesh.com.np/c-programming/ 9/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

It is the process of fixing program errors and improving the program. If a program is easy to read and understand, then its maintenance
will be easier. It should also prevent unwanted work so that the maintenance cost in the future will be low. It should also have quality to
easily meet new requirements. A maintainable software allows us to fix bugs quickly and easily, improve usability and performance, add

new features, make changes to support multiple platforms, and so on.

Efficient

Program is said to be more efficient if it takes the least amount of memory and processing time and is easily converted to machine language.
The algorithm should be more effective. Every program needs a certain amount of processing time and memory to process the instructions and
data. The program efficiency is also high if it has a high speed during runtime execution of the program.

Reliable

The user’s actual needs will change from time-to-time, so the program is said to be reliable if it works smoothly in every version. It is measured
as reliable if it gives the same performance in all simple to complex conditions.

Machine Independent

Program should be machine-independent. Program written on one system should be able to execute on many different types of computers
without any changes. It is not system specific and provides more flexibility. An example of this would be Java.

Cost Effectiveness

Cost Effectiveness is the key to measure the program quality. The cost must be measured over the life of the program and must include both
costs and human costs of producing these programs.

Flexible

The program should be written in such a manner that it allows one to add new features without changing the existing module. The majority of
the projects are developed for a specific period, and they require modifications from time to time. It should always be ready to meet new

EPHrfF'e?SIWPSdeéﬁ‘gﬁ ii%wiyj ready for a new world of possibilities.

e C programming is a general-purpose, procedural programming language developed in 1972 by Dennis M. Ritchie at the Bell
Telephone Laboratories to develop the UNIX operating system.
e The UNIX OS was totally written in C.

History of C

C programming language was developed in 1972 by Dennis Ritchie at bell laboratories of AT&T (American Telephone &
Telegraph), located in the U.S.A. Dennis Ritchie is known as the founder of the c language. C was developed to overcome the problems of

https://parajulirajesh.com.np/c-programming/

10/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

previous languages such as B, BCPL, etc.

Initially, C language was developed to be used in UNIX operating system. It inherits many features of previous languages such as B and BCPL.

Language Year Developed By
Algol 1960 International Group
BCPL 1967 Martin Richard

B 1970 Ken Thompson
Traditional C 1972 Dennis Ritchie

Today C is the most widely used and popular System Programming Language. Today’s most popular Linux OS and RDBMS MySQL have been

written in C.

Structure of C Program

// Structure of c
#include<stdio.h>/
int main()//main_function

int a, b; //declare var
printf("enter numbers:
scanf("%d %d",8a,&b); //read

comp1i

return 03 //does not return null

DOV NDIV A WNPE

[

C:\Users\Asus\Desktop\C pro X + | ™

enter numbers:10 30

the value of entered numbers are:10 30

Process exited after 4.657 seconds with return value 0

Press any key to continue . . . |

PR

1. Documentation (Documentation Section)
2. Preprocessor Statements (Link Section)

https://parajulirajesh.com.np/c-programming/

printf("the value of entered numbers a-re:%d s %d", a,b); //display entered value to users

11/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

3. Definition Section

4. Global Declarations Section

5. Main functions section

6. User-Defined Functions or Sub program functions

In C language, all these six sections together make up the Basic Structure of C Program

1. Documentation (Documentation Section)

Programmers write comments in the Documentation section to describe the program. The compiler ignores the comments and does not print
them on the screen. Comments are used only to describe that program.

/* File Name -: Hello.c
Author Name -: Rajesh parajuli Founder of parajulirajesh.com.np
Date -: 12/09/2023
Description -: Basic Structure of C program */

//This is a single line comment

2. Preprocessor Statements (Link Section)

Within the Link Section, we declare all the Header Files that are used in our program. From the link section, we instruct the compiler to link those
header files from the system libraries, which we have declared in the link section in our program.

#include <stdio.h>
#include <conio.h>
#include <string.h>

#include <math.h>

In addition to all these Header Files in the Link Section, there are a lot of Header Files which we can link in our program if needed.

3. Definition Section

The definition of Symbolic Constant is defined in this section, so this section is called Definition Section. Macros are used in this section.

#define PI 3.14

https://parajulirajesh.com.np/c-programming/

12/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

4. Global Declarations Section

Within the Global Declarations Section, we declare such variables which we can use anywhere in our program, and that variable is called Global
Variables, we can use these variables in any function.

In the Global Declaration section, we also declare functions that we want to use anywhere in our program, and such functions are called Global
Function.

int area (int x); //global function

int n; // global Variable

5. Main functions section

Whenever we create a program in C language, there is one main() function in that program. The main () function starts with curly brackets and
also ends with curly brackets. In the main () function, we write our statements.

The code we write inside the main() function consists of two parts, one Declaration Part and the other Execution Part. In the Declaration Part, we
declare the variables that we have to use in the Execution Part, let's understand this with an example.

int main (void)

{
int n = 15; // Declaration Part

printf ("n = %d", n); // Execution Part

return (0);

}

6. User-Defined Functions or Sub Program Section

Declare all User-Defined Functions under this section.

int sum (int x, int y)
{

return x + y;

What is the structure of C program syntax?

https://parajulirajesh.com.np/c-programming/

13/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

Any C Program can be divided into header, main() function, variable declaration, body, and return type of the program.

Basic Structure explaining with an example.

// Documentation
/**

*file: sum.c

* author: you

* description: program to find sum.

*/

// Link
#include <stdio.h>

// Definition
#define X 20

// Global Declaration
int sum(int y);

// Main() Function

int main(void)

{

inty = 55;

printf(“Sum: %d”, sum(y));
return O;

}

// Subprogram
int sum(int y)
{

returny + X;

}

https://parajulirajesh.com.np/c-programming/

Sections

/**
* file: sum.c
* author: you
* description:
program to find sum.
*/

#include<stdio.h>

#define X 20

int sum(inty)

int main()

{..}

printf(“Sum: %d”,
sum(y));

return 0;

int sum(int y)

{

Description

It is the comment section and is part of
the description section of the code.

Header file which is used for standard
input-output. This is the preprocessor
section.

This is the definition section. It allows the
use of constant X in the code.

This is the Global declaration section
includes the function declaration that can
be used anywhere in the program.

main() is the first function that is executed
in the C program.

These curly braces mark the beginning
and end of the main function.

printf() function is used to print the sum
on the screen.

We have used int as the return type so we
have to return 0 which states that the
given program is free from the error and it
can be exited successfully.

This is the subprogram section. It includes
the user-defined functions that are called
in the main() function.

14/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

Sections Description

returny + X;
Write a C program to implement subtraction by giving two numbers from user inputs. }

//C Program To Subtract Two Numbers
#include<stdio.h>
int main()

{

int num1, num2, difference;

//Asking for input

printf(“Enter first number:);
scanf(“%d”, &um1);
printf(“Enter second number: “);
scanf(“%d", &um?2);

difference = num1 - num2;
printf(“Difference of num1 and numz2 is: %d” difference);
return O;

}

Character Set

As every language contains a set of characters used to construct words, statements, etc., C language also has a set of characters which
include alphabets, digits, and special symbols. C language supports a total of 256 characters. Every character in C language has its equivalent
ASCII (American Standard Code for Information Interchange) value.

Every C program contains statements. These statements are constructed using words and these words are constructed using characters from C
character set. C language character set contains the following set of characters

1. Alphabets
2. Digits
3. Special Symbols

Alphabets:

C language supports all the alphabets from the English language. Lower and upper case letters together support 52 alphabets.
lower case letters —a to z
UPPER CASE LETTERS - Ato Z

Digits: C language supports 10 digits which are used to construct numerical values in C language.

https://parajulirajesh.com.np/c-programming/

15/84

9/7/25, 7:54 PM

Digits-0,1,2,3,4,5,6,7,8,9
Special Symbols:

C language supports a rich set of special symbols that include symbols to perform mathematical operations, to check conditions, white spaces,

backspaces, and other special symbols.

Special Symbols —~@#$ % * &* () _—+={}[1;:°"1?2.>,<\|

C Programming - parajulirajesh.com.np

Symbols Name Symbols Name
~ Tilde > Greater than
< Less than & Ampersand
| Or/pipe # Hash
S Greater than equal <= Less than equal
== Equal , - = Assignment
= Not equal A Caret
{ Left brace } Right brace
(Left parenthesis) Right parenthesis
[Left square bracket] Right square bracket
/ Forward slash \ Backward slash
Colon - Semicolon
+ Plus B Minus
. Multiply / Division
% Mod ; Comma
: Single quote “ Double quote
>> Right shift << Left shift
Period _ Underscore

Tokenin C

A token is a smallest individual element of a program which is meaningful to the compiler. The compiler that breaks a program into the smallest
units is called tokens and these tokens proceed to the different stages of the compilation.

e Tokens in C are building blocks which means a program can't be created without tokens.

https://parajulirajesh.com.np/c-programming/ 16/84

9/7/25, 7:54 PM

1

Keywords

Classification of C Tokens

1.Keywords

\dentifiers

C Programming - parajulirajesh.com.np

3

Constants

Keywords are predefined, reserved words used in programming that have special meanings to the compiler. Keywords are part of the syntax and

they cannot be used as an identifier.

As C is a case sensitive language, all keywords must be written in lowercase. Here is a list of all keywords allowed in ANSI C.

auto double
break else
case enum
char extern
continue for

do if
Z’Tdentifiers -
const float

C predefined Keywords

int

long

register

return

signed

static

sizeof

short

struct

switch

typedef

union

void

while

volatile

unsigned

Identifiers in C are used for naming variables, functions, arrays, structures, etc. Identifiers in C are the user-defined words. It can be composed of

uppercase letters, lowercase letters, underscore, or digits, but the starting letter should be either an underscore or an alphabet. Identifiers cannot
be used as keywords. Rules for constructing identifiers in C are given below:

* An identifier can only have alphanumeric characters (a-z, A-Z, 0-9) (i.e. letters and digits) and underscore(_) symbol.

Identifier names must be unique.

¢ You cannot use a keyword as an identifier.

https://parajulirajesh.com.np/c-programming/

The first character must be an alphabet or underscore.

17/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

* Only the first thirty-one (31) characters are significant.
¢ |t must not contain white spaces.
* Identifiers are case-sensitive.

For Example:
int cprogram;
Char Bicte_firstsemester;

here, int and Char is keywords and cprogram and Bicte_firstsemester is identifier.

3.Constants

The constants in C are the read-only variables whose values cannot be modified once they are declared in the C program. The type of constant
can be an integer constant, a floating pointer constant, a string constant, or a character constant. In C language, the const keyword is used to
define the constants.

What is a constant in C?
As the name suggests, a constant in C is a variable that cannot be modified once it is declared in the program. We can not make any
change in the value of the constant variables after they are defined.

Syntax to Define Constant

const data type var name = value;

https://parajulirajesh.com.np/c-programming/ 18/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Constants

I
o

Const int var

b

Keyword Datatype Name of Initial
Student Value

Types of Constants in C

C Constants

l
l l

Numer'l: constant Cha ractelcunstaut
Integer %ﬂnstant Real constant Character constant String constant
// C program to illustrate constant variable definition // C Program to demonstrate the behaviour of constant
#include <stdio.h> // variable
#include <stdio.h>
int main()
{ int main()
{
// defining integer constant using const keyword // declaring a constant variable
const int int_const = 25; constint var;

// initializing constant variable var after declaration

https://parajulirajesh.com.np/c-programming/

19/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np
// defining character constant using const keyword var = 20;
const char char_const = ‘A’;
printf(“Value of var: %d”, var);
// defining float constant using const keyword return 0;
const float float_const = 15.66; }

printf(“Printing value of Integer Constant: %d\n”",
int_const);

printf(“Printing value of Character Constant: %c\n”,
char_const);

printf(“Printing value of Float Constant: %f”,
float_const);

return 0;

}

4.Strings

¢ Sequence of Characters is known as Strings.

e Every String is terminated by \0

e String Constant is a sequenced os 0 or more characters enclosed between double quotes ” ” is known as string constant e.g. “S”, “XYZ”",
“123", "hello world”

¢ All characters are converted into their corresponding ASCII value and then stored in memory as contiguous allocation.

 String Variable is the array of character type. For e.g. char[10];

char greeting[6] = {H',"e", 'l I, '0, \0'};
If you follow the rule of array initialization then you can write the above statement as follows —

char greeting[] = "Hello";

#include <stdio.h>

#include <stdio.h> int main()
{
int main () { char namel6];
printf(“Enter name: “);
char greeting[6] = {'H', 'e', '1', 'l', 'o', "\ scanf(“%s”, name);

https://parajulirajesh.com.np/c-programming/

20/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

printf ("Greeting message: %s\n", greeting); printf(“Your name is %s.”, name);
return 0; return 0;
} }

Like many other programming languages, strings in C are enclosed within double quotes(” “), whereas characters are enclosed within single
quotes(* ‘). When the compiler finds a sequence of characters enclosed within the double quotation marks, it adds a null character (10) at the end
by default.
4 G >
1. Character arrays are used for declaring strings in C.
2. The general syntax for declaring them is:

char variable[array_size];

5.Special Symbols

Special Symbols are symbols in C language that have special meaning and can not be used for any other purpose.

 Brackets[]: Opening and closing brackets are used as array element references. These indicate single and multidimensional subscripts.

» Parentheses(): These special symbols are used to indicate function calls and function parameters.

¢ Braces{}: These opening and ending curly braces mark the start and end of a block of code containing more than one executable
statement.

e Comma (,): It is used to separate more than one statement like for separating parameters in function calls.

e Colon(:): It is an operator that essentially invokes something called an initialization list.

* Semicolon(;): It is known as a statement terminator. It indicates the end of one logical entity. That's why each individual statement must
be ended with a semicolon.

e Asterisk (*): It is used to create a pointer variable and for the multiplication of variables.

* Assignment operator(=): It is used to assign values and for logical operation validation.

* Pre-processor (#): The preprocessor is a macro processor that is used automatically by the compiler to transform your program before
actual compilation.

 Period (.): Used to access members of a structure or union.

 Tilde(~): Used as a destructor to free some space from memory.

Square Brackets [|

The opening and closing square brackets represent single and multi-dimensional subscripts and they are used as array element reference for
accessing array elements.

int arr[10]; /For declaring array, with size defined in square brackets

Simple Brackets ()
The opening and closing circular brackets are used for function calling and function declaration.

https://parajulirajesh.com.np/c-programming/

21/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

get_area(100); //Function calling with 100 as parameter passed in circular brackets

Curly Braces { }

In C language, the curly braces are used to mark the start and end of a block of code containing executable logical statements.

int main{

printf(“lllustrating the use of curly braces!”);

}

Comma (,)

Commas are used to separate variables or more than one statement just like separating function parameters in a function call.
int a=10,b=20,c=30; //Use of comma operator

Pre-Processor / Hash (#)

It is a macro-processor that is automatically used by the compiler and denotes that we are using a header file.
#include<stdio.h> //For defining header-file

#define Il long

int main(){
printf(“Hello World!");
}

Asterisk (*)
Asterisk symbols can be used for multiplication of variables and also for creating pointer variables. Example:

int main(){

inta=20b=10;

int sum = a*b; //Use of asterisk in multiplication

int *ptr = &a;

//Pointer variable ptr pointing to address of integer variable a
}

Tilde (~)

Itis used as a destructor to free some space from the memory.

int main(){

intn=2;

printf(“Bitwise complement of %d: %d”, n, ~n);

//Bitwise complement of 2 can be found with the help of tilde operator and the result here is -3

}

Period (.)
It is used to access members of a structure or a union.

#include <stdio.h>
#include <string.h>

https://parajulirajesh.com.np/c-programming/

22/84

9/7/25, 7:54 PM

struct Person { //structure defined
int city_no; /members of structure
float salary;

}personT;

int main(){

person1.city_no = 100;

//accessing members of structure using period (.) operator
person1.salary = 200000;

printf(“City_Number: %d”,person1.city_no);

printf(“\nSalary: %.2f" person1.salary);

return 0;

}

Colon (3)
Itis used as a part of conditional operator (?:) in C language.
Example:

inta=10b=20c;

c=(a<b)?a:b;

//If a<b is true, then c will be assigned with the value of a else b
printf(“%d”, c);

Semicolon (;)

It is known as a statement terminator and thus, each logical statement of C language must be ended with a semi-colon.

Example:

C Programming - parajulirajesh.com.np

int a=10; //Semi-colon is widely used in C programs to terminate a line

Assignment Operator (=)

Itis used to assign values to a variable and is sometimes used for logical operation validation.

Example:

inta =10, b = 20; //Assignment operator is used to assign some values to the variables

6.operators

Operators are symbols that are used to perform some operation or a set of operations on a variable or a set of variables. C has a set of operators
to perform specific mathematical and logical computations on operands. C Supports a rich set of built-in Operators. Operators are used to

rOnrthe-Basisofnumber of operands required for an operator

https://parajulirajesh.com.np/c-programming/

23/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Example: Y= a+b
Unary Operator: The operator which require only one operand are known as unary Operator. Examples: ++ (increment operator), — (decrement

Ope'raT:?Q'a?(e%pgr_ator

e a,bare operand
Binary Operators: The operators which require two operands are known as binary operators. For example: A+B, A-B, A*B, A/B etc.

Types of Operator:

Ternary Operators: The operators that require three operands are known as ternary operators. For Example: A ? B : C (this is also a condiotional
ope-lr'a?c?r)t e basis of the number of operands required for an operator
2. 0n'the basis of utility or functions of an operator

2. On the Basis of Utility (or functions) of an operator

According to the utility and action, operators are classified into following categories:

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Increment and Decrement Operators
6. Conditional Operators

7. Bitwise Operators

8. Special Operators

Arithmetic Operators

Arithmetic Operators are the type of operators in C that are used to perform mathematical operations in a C program. They can be used in
programs to define expressions and mathematical formulas.

Operator Arithmetic Operation
Name of the Operator Syntax

+ Addition X+
Add two operands. 4

- Subtraction X=y
Subtract the second operand from the first operand.

* Multiplication . X*y
Multiply two operands.

/ Division . x/ly
Divide the first operand by the second operand.

https://parajulirajesh.com.np/c-programming/ 24/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Operator Arithmetic Operation
Name of the Operator Syntax

//9§ program tg demassinatesithmetic operators _ o X%y
#include <stdio h> Calculate the remainder when the first operand is divided by the second operand.

int main()

{
inta=10,b=4,res;

// printing a and b
printf(“ais %d and b is %d\n", a, b);

res = a + b; // addition
printf(“a + b is %d\n", res);

res = a — b; // subtraction
printf(“a — b is %d\n", res);

res = a* b; // multiplication
printf(“a * b is %d\n”", res);

res =a/ b; // division
printf(“a / b is %d\n”, res);

res =a % b; // modulus
printf(“a %% b is %d\n”, res);

return 0;

}
Relaional/ Comparison Operators

A relational operator checks the relationship between two operands. If the relation is true, it returns 1; if the relation is false, it returns value 0.

Operator Name Example Result
== Equal to X==y Returns 1 if the values are equal
1= Not equal xl=y Returns 1 if the values are not equal

https://parajulirajesh.com.np/c-programming/ 25/84

9/7/25, 7:54 PM

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

x>y

X>=y

C Programming - parajulirajesh.com.np

Returns 1 if the first value is greater than the second value

Returns 1 if the first value is less than the second value

Returns 1 if the first value is greater than, or equal to, the second value

Returns 1 if the first value is less than, or equal to, the second value

// C program to demonstrate working of relational operators

#include <stdio.h>

int main()
{
inta=10,b =4,

// greater than example

if (@a>b)

printf(“a is greater than b\n");

else

printf(“a is less than or equal to b\n");

// greater than equal to

if (a>=b)

printf(“a is greater than or equal to b\n");
else

printf(“a is lesser than b\n”");

// less than example

if (a<b)

printf(“a is less than b\n");

else

printf(“a is greater than or equal to b\n");

// lesser than equal to
if (a<=b)
printf(“a is lesser than or equal to b\n");

https://parajulirajesh.com.np/c-programming/

26/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

else
printf(“a is greater than b\n");

// equal to

if (a==b)

printf(“a is equal to b\n");

else

printf(“a and b are not equal\n”);

// not equal to

if (al=b)
printf(“a is not equal to b\n");
else

printf(“a is equal b\n");

return O;

}
Logical operators

Logical Operators are used to compare or evaluate logical and relational expressions. The operands of logical operators must be either Boolean
value (1 or 0) or expressions that produces Boolean value. The Output of these operators is always either 1 true or 0 False. The logical Operators
supported in C are :

¢ &&logical AND : it produces true if each operand is true otherwise it produces false.
¢ || Logical OR: it produces true when any of the conditions is true.
e | logical NOT- it reverse to the operand.

Write a program to illustrate the output of logical operators.

#include<stdio.h>

#include<conio.h>

int main()

{

inta=10, b=5, c=40;

printf(“a<b && a<c is %d\n", (a<b && a<c));
printf(“a>b && b>c is %d\n", (a>b && b<c));
printf(“a<b || a<c is %d\n”, (a<b || a<c));
printf(“a>b || b<c is %d\n”, (a>b || b<c));
printf(“a>c || b>c is %d\n", (a>c || b>c));

Printf(“not operator “, alb);

https://parajulirajesh.com.np/c-programming/ 27184

9/7/25, 7:54 PM

getch();
return 0;

}

Assignment operators

Assignment Operators are also binary operators and they are used to assign result of an expression to a variable. The mostly used assignment
operator is ‘=". There are other shorthand assignment operators supported by C. They are +=,

as arithmetic assignment operators.

+= Addition Assignment (a+=b, means a=a+b) assign sum of a and b to a.

-= Subtraction Assignment (a-=b, means a=a-b) assign subtraction of a and b to a)

= Multiplication Assignment (a=b, means a=a*b) assign multiplication of a and b to a)

/= Division Assignment (a/=b, means a=a/b) assign division of a and b to a)

%= Remainder Assignment (a%=b, means a=a%b) assign remainder of a divisible by b to a)

Demostrate the assignment operator in ¢ program

#include<stdio.h>
#include<conio.h>
int main()

{

int a=10, b=5;
b+=a; //b=b+a
printf(“b=%d", b);
getch();

return 0O;

}

Output:

b=15

Increment and decrement operators

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

,*=, /+ and %=. These Operators are also known

28/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

The increment operator is used to increase the value of an operand by 1; and the decrement operator is used to decrease the value of an
operand by 1. They take one operand, so called unary operator. The syntax for the operator is:

e ++ variable
e variable++
e —variable

e variable++

#include <stdio.h>

int main() {

intx=10;

printf(“Initial value of x: %d\n”, x);

x++; // Increment

printf(“After increment (x++): %d\n”, x);
x—; // Decrement

printf(“After decrement (x-): %d\n”, x);
return 0;

}

Conditional Operators

The Operator named “?:” is known as conditional Operator. It takes three operands. Thus, it is also called ternary operator. The syntax is :
value= expression ? expression2: expression3
working principal

« If(expression 1)
e variable = expression2;
e else

¢ variable = expression3;

Write a program to read two numbers from user and determine the larger number using conditional operator.
#include<stdio.h>

#include<conio.h>

int main()

{

intn1, n2, larger;

printf(“"Enter two numbers:”);

scanf(“%d%d”, &n1, &n2);

larger =n1>n2 ? n1: n2;

Printf(“The larger number is %d”", larger);

https://parajulirajesh.com.np/c-programming/ 29/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

getch();
return 0;

}

Output:

Enter two numbers: 35 90
The larger number is 90

Bitwise Operator

The bitwise operators are the operators used to perform the operations on the data at the bit-level. When we perform the bitwise
operations, then it is also known as bit-level programming. It consists of two digits, either 0 or 1. It is mainly used in numerical
computations to make the calculations faster. It can be used only integer type values not float, double etc.

We have different types of bitwise operators in the C programming language. The following is the list of the bitwise operators:
Operator Meaning of operator

& Bitwise AND operator

| Bitwise OR operator

A Bitwise exclusive OR operator
~ One’'s complement operator (unary operator)
<< Left shift operator
Right shift operator
>>

Let's look at the truth table of the bitwise operators.

X Y X&Y XY XY
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Bitwise exclusive operator gives 0 if both corresponding values are same. if both corresponding vales are not same, it gives 1.

https://parajulirajesh.com.np/c-programming/

30/84

9/7/25, 7:54 PM

Write a program to demostrate bitwise operator.

#include<stdio.h>

int main()

{

inta=7,b=14;

printf(“Bitwise AND %d\n", a&b);
printf(“Bitwise OR %d\n", alb);
printf(“Bitwise XOR %d\n”, a"b);
return 0;

}
Output:
Bitwise AND 6

Bitwise OR 15
Bitwise XOR 9

Left Shift Operator

The left shift operator is a type of Bitwise shift operator, which performs operations on the binary bits. It is a binary operator that requires two
operands to shift or move the position of the bits to the left side and add zeroes to the empty space created at the right side after shifting the

bits.

C Programming - parajulirajesh.com.np

Bitwise Left shift operator is used to shift the binary sequence to the left side by specified position.

Example

Let’s take a number 14.

Binary representation of 14 is 00001110 (for the sake of clarity let's write it using 8 bit)

14 = (00001110) »

Then 14 << 1 will shift the binary sequence 1 position to the left side.

Like,

https://parajulirajesh.com.np/c-programming/

31/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

14 0 0 0 0 1 1 5) I)‘

14 << 1 0 0 0 1 1 1 0 ‘ 28 14°2
Empty boxes will be marked as 0
< € e g 5 3
ST
14<<2 0 0 1 1 1 0 ‘ 56 282

#include <stdio.h> ‘/‘/

algm.m{naﬁlllétiwibbe shifted one more time

Empty boxes will be marked as 0

{

// declare local variable

int num;

printf (" Enter a positive number: “);

scanf (" %d”, &um);

// use left shift operator to shift the bits

num = (num << 2); // It shifts two bits at the left side
printf (" \n After shifting the binary bits to the left side. “);
printf (" \n The new value of the variable num = %d”, num);
return O;

}

Enter a positive number: 14

After shifting the binary bits to the left side.

The new value of the variable num = 56

In general, if we shift a number by n position to left, the output will be number * (2").

Right Shift Operator

https://parajulirajesh.com.np/c-programming/

32/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

The right shift operator is a type of bitwise shift operator used to move the bits at the right side, and it is represented as the double (>>) arrow
symbol. Like the Left shift operator, the Right shift operator also requires two operands to shift the bits at the right side and then insert the

zeroes at the empty space created at the left side after shifting the bits.

Bitwise Right shift operator >> is used to shift the binary sequence to right side by specified position.

Example

Let's take a number 14.
Binary representation of 14 is 00001110 (for the sake of clarity let's write it using 8 bit)
14 =(00001110) o

Then 14 >> 1 will shift the binary sequence by 1 position to the right side.

N Y R e —_"
OO0 l
2t R o
L e !

Empty boxes will be marked as 0

In general, if we shift a number by n times to right, the output will be number / (2") .

1. #include <stdio.h>

2. int main ()

3.4

4. // declare local variable

5.int num;

6. printf (" Enter a positive number: “);
7. scanf (" %d", &um);

https://parajulirajesh.com.np/c-programming/

33/84

9/7/25, 7:54 PM

8. // use right shift operator to shift the bits
9. num = (num >> 2); // It shifts two bits at the right side

10. printf (" \n After shifting the binary bits to the right side. “);
11. printf (" \n The new value of the variable num = %d", num);

12. return 0;
13.}

Output:

Enter a positive number:

After shifting the binary bits to the right side.

The new value of the variable num = 3

Datatypes

Datatypes refers to the types of data.

Category Data Type
Primitive char
signed char

unsigned char

int

unsigned int

https://parajulirajesh.com.np/c-programming/

Format Specifier

%C

%C

%C

%d, %i

%U

Size (Bytes)

2o0r4

2or4

C Programming - parajulirajesh.com.np

Range

-128 to 127 (signed) / 0 to 255
(unsigned)

-128 to 127

0to 255

-32,768 t0 32,767 (2-byte) /
-2,147,483,648 to
2,147,483,647 (4-byte)

0t0 65,535 (2-byte) / 0 to
4,294,967,295 (4-byte)

Description

Stores a single
character.

Stores a signed
character.

Stores an unsigned
character.

Stores integers
(whole numbers).

Stores non-
negative integers.

34/84

9/7/25, 7:54 PM

https://parajulirajesh.com.np/c-programming/

short int

unsigned short int

long int

unsigned long int

long long int

unsigned long long
int

float

double

long double

%hd

%hu

%ld

%lu

%lld

%llu

%f

%lf

%Lf

C Programming - parajulirajesh.com.np

2 -32,768 to 32,767

2 01to 65,535

-2,147,483,648 to
2,147,483,647 (4-byte) /

4or8 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 (8-
byte)

0t0 4,294,967,295 (4-byte) / 0

4or8 to 18,446,744,073,709,551,615
(8-byte)

8 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

8 Oto
18,446,744,073,709,551,615

4 3.4E-38 to 3.4E+38

8 1.7E-308 to 1.7E+308

10,12,0r16 3.4E-4932 to 1.1E+4932

Stores small
integer values.

Stores small
unsigned integers.

Stores long
integers.

Stores long
unsigned integers.

Stores very large
integers.

Stores very large
unsigned integers.

Stores single
precision floating-
point numbers.

Stores double
precision floating-
point numbers.

Stores extended
precision floating-
point numbers.

35/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Represents no
void N/A 0 N/A value or an
unknown type.

A collection of
. Depends on the type and
Derived Array N/A Depends elements of the
number of elements
same type.

Stores the memory
Depends on the system

Pointer %p 4o0r8 . address of another
architecture .
variable.
A collection of
Depends on the structure variables of
User-Defined struct N/A Depends .
members different data types
under one name.
Shares memory
among its
. Depends on the largest 9 .
union N/A Depends members, with only
member]
one member being
used at a time.
. Represents a set of
Based on the integer values]
. enum %d 4 ianed t tant named integer
assigned to constants
Variable g constants.

Variable is a container that holds the value of any kind of data type. It is a case sensitive in c program. It is an identifier which store the value and
reserved some memory space for data of any type.

Syntax:

data_type variable_name=value;

Rules for defining variable

e Avariable can have alphabets, digits, and underscore.
¢ A variable name can start with the alphabet, and underscore only. It can't start with a digit.
¢ No whitespace is allowed within the variable name.

https://parajulirajesh.com.np/c-programming/ 36/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

¢ A variable name must not be any reserved word or keyword, e.qg. int, float, etc.

Example
#include <stdio.h>

int main() {

int x = 5;// x is a variable of integer type

char y[12] = “helloworld”;// y is a variable of string type
char z='b’; // z is a variable of character type

float a=12.5; // a is a variable of float type
double b=19.99; // b is a variable of double type
printf(“%d\n%s\n%c\n%f\n%If\n", x,y,z,a,b);

return O;

}
Output:

5
helloworld
b
12.500000
19.990000

Datatypes List

Data Type Size
byte 1 byte
short 2 bytes
int 4 bytes
long 8 bytes
float 4 bytes
double 8 bytes
boolean 1 bit
char 2 bytes

https://parajulirajesh.com.np/c-programming/

Description
Stores whole numbers from -128 to 127
Stores whole numbers from -32,768 to 32,767
Stores whole numbers from -2,147,483,648 to 2,147,483,647
Stores whole numbers from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits
Stores fractional numbers. Sufficient for storing 15 decimal digits
Stores true or false values

Stores a single character/letter or ASCII values

37/84

9/7/25, 7:54 PM

Type conversion is the way of converting a datatype of one variable to another datatype.

Types of type conversion:

1. Implicit type conversion- conversion is done by the compiler and there is no loss of information. It is automatic type conversion.
2. Explicit type conversion- conversion is done by the programmer and there will be loss of information.

Implicit Type Conversion

// An example of implicit conversion
#include <stdio.h>

int main()

{

int x =10; // integer x

chary =‘a’; // character ¢

//'y implicitly converted to int. ASCII
// value of ‘a’is 97
X=X+Yy;

// x is implicitly converted to float
floatz=x+1.0;

printf(“x = %d, z = %f", X, z);
return 0;

}

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

Type Casting / Type Conversion

38/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Explicit Type Conversion

Lower Data Explicit Type Higher Data

type Conversion type

This process is also called type casting and it is user-defined. Here the user can typecast the result to make it of a particular data
type

Syntax:
(type) expression
Example:

float f = 10.5;
int num = (int)f; // Explicit typecasting (float to int)

Control Statements in ¢
// C program to demonstrate explicit type casting
8%1?#‘61‘“3?%&%%‘%@513 control the flow of execution of the statements of a program. The various types of Control statements are :

int main()

{

https://parajulirajesh.com.np/c-programming/ 39/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Control Statements

5 active /Dacisioh Iteration/Looping Jumping

Making / Conditional Ctota e
Statements Statements

Conditional FOI’ LOO p b I'eak

While Loop continue
Do while Loop { goto
return

operator

if
if else
if else laddar

nested if else
1. Conditional Statements / Selective / Desision Structure

In conditional control , the execution of statements depends upon the condition-test. If the condition evaluates to true, then a set of statements
is executed otherwise another set of statements is followed. This control is also called Decision Control or selective control statement because

it helps in making decision about which set of statements is to be executed.

If statement: This is the most simple form of decision control statement. In this form, a set of statements are executed only if the condition

given with if evaluates to true.

Syntax:

if(condition)

{

//if block of Statements executed if the given if condition is true ;

}

https://parajulirajesh.com.np/c-programming/ 40/84

9/7/25, 7:54 PM

If else Statement: This is a bi-directional control statement. This statement is used to test a condition and take one of the two possible actions.
If the condition evaluates to true then one statement (or block of statements) is executed otherwise other statement (or block of statements) is

executed.

Syntax:

if(expression)
{

//code to be executed if condition is true

}

else

{

//code to be executed if condition is false

}

//executed outer statements;

If else ladder statements(if-else-if):

The if-else-if ladder statement is an extension to the if-else statement. It is used in the scenario where there are multiple cases to be performed
for different conditions. In if-else-if ladder statement, if a condition is true then the statements defined in the if block will be executed, otherwise
if some other condition is true then the statements defined in the else-if block will be executed, at the last if none of the condition is true then the
statements defined in the else block will be executed. There are multiple else-if blocks possib

Syntax:

if(condition1)
{

//code to be executed if condition1 is true

}

else if(condition2)

{

//code to be executed if condition2 is true

}

else if(condition3)

{

//code to be executed if condition3 is true

}

else

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

41/84

9/7/25, 7:54 PM
{

C Programming - parajulirajesh.com.np

//code to be executed if all the conditions are false

}

//executed outer statements if it is there;

Nested if else: Nested if else statement is a control statement where both if else statement is there with having another if else statement inside

it.

Syntax of nested if else:
if (conditionT){
if (condition2)
stmt1;

else

stmt2;

}

else {

if (condition3)
stmt3;

else

stmt4;

}

Q. Find greatest number among three
numbers using if statement.
#include <stdio.h>

int main() {

intn1,n2,n3;

printf(“Enter three different numbers: “);
scanf(“%d %d %d”, &1, &n2, &n3);

// if n1 is greater than both n2 and n3,n1 is
the largest

if (N1 >=n2 &&n1 >=n3)

printf(“%d is the largest number.”, n1);

https://parajulirajesh.com.np/c-programming/

Q. Find greatest humber among three
numbers using if else laddar statement.
#include <stdio.h>

int main() {

intn1,n2,n3;

printf(“Enter three numbers: “);
scanf(“%d %d %d”, &n1, &n2, &n3);

/1 if n1 is greater than both n2 and n3, n1 is
the largest

if (N1 >=n2 &&n1 >=n3)

printf(“%d is the largest number.”, n1);

Q.Find the greatest number among three
numbers using nested if else statement.

#include <stdio.h>

int main() {

intn1,n2, n3;

printf(“"Enter three numbers: “);
scanf(“%d %d %d”, &1, &n2, &n3);

// outer if statement
if (n1 >=n2){

// inner if...else
if (N1 >=n3)

42/84

9/7/25, 7:54 PM

// if n2 is greater than both n1 and n3, n2 is
the largest

if (N2 >=n1 && n2 >=n3)

printf(“%d is the largest number.”, n2);

// if n3 is greater than both n1 and n2, n3 is
the largest

if (N3 >=n1 && n3 >=n2)

printf(“%d is the largest number.", n3);

return O;

}

C Programming - parajulirajesh.com.np

// if n2 is greater than both n1 and n3, n2 is
the largest

else if (N2 >=n1 && n2 >=n3)

printf(“%d is the largest number.”, n2);

// if both above conditions are false, n3 is the
largest

else

printf(“%d is the largest number.”, n3);

return 0;

}

printf(“%d is the largest number.”, n1);
else
printf(“%d is the largest number.”, n3);

}

// outer else statement
else {

// inner if...else

if (N2 >=n3)

printf(“%d is the largest number.”, n2);
else

printf(“%d is the largest number.”, n3);

}

return 0;

}

Switch case: A switch statement allows a variable to be tested for equality against a list of values. Each value is called a case, and the variable
being switched on is checked for each switch case. The switch statement allows us to execute one code block among many alternatives.

Syntax:

switch (expression)
{

case constant1:

// statements
break;

case constant2:

// statements
break;//optional

default:

https://parajulirajesh.com.np/c-programming/

Q. C program to calculate the weekday name by entering numbers

#include <stdio.h>

int main() {
int day = 4;

switch (day) {

case 1:
printf(“Monday”);
break;

case 2:
printf(“Tuesday”);
break;

case 3:
printf(“Wednesday");

43/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

// default statements break;

} case 4:
printf(“Thursday”);
break;
case 5:
printf(“Friday”);
break;
case 6:
printf(“Saturday”);
break;
case7:
printf(“Sunday”);
break;

}

return 0;

}

Conditional operator statement: It is a ternary operator and is used to perform simple conditional operations. It is used to do operations similar
to if-else statement.

The general syntax of conditional operator is as under:-
Test expression? expressionl:expression2

https://parajulirajesh.com.np/c-programming/ 44/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

True

(condition) ? expressionl : expression2

False

Example

Write a c program to demonstrate the conditional operator statement?
#include <stdio.h>

int main() {

int num;

scanf(“%d", &um);

(num % 2 == 0)? printf(“The given number is even”) : printf(“The given number is odd”);

return 0;

}

https://parajulirajesh.com.np/c-programming/ 45/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

2. lteration ffl.epping statements: | Ternary Operator

I
Loop may be defined agijlgek ofcrtatementswihish are repeatedly execthed for g £aRaIn MEMber-fitimes-or until a particular condition is
satisfied. Iterations or loops are used when we want to execute a staterpent or block of statements several times. The repetition of loops is

controlled with the help;of a tﬁgﬁqpqiti@n. The statements in the loop h(eep on qwgum'égir,g@e}titj{/ely until the test condition becomes false.

int number = 3; i int number = 3;
There are three types of loop in C :

if (number % 2 == 0) { (number % 2 == 0) ?

l
i
Ui Ivoop printf("Even Number"); ! printf("Even Number")
2. Do-while loop } 1 printf("0dd Number");
3. For loop else { i
printf("0dd Number"); : return 0;
} | }

I
While loop: The while loop-leops-exe@ute a block of code as long as a ﬁpeciﬁed condition is true. It is also known as entry controlled loop that
means the test conditiop is checked before entering the main body of the loop.

Syntax:

e _ Ternary operator vs if...else
initialization_expression;

while (test_expression)

?uestions for students:

// body of the while loop
1., Writea c pregram to find greatest number among two numbers using conditional operator statement.
update_expression;
2. Write a ¢ program to print candidate can vote if candidate age is greater or equal to 18 and print candidate cannot vote if not greater than

equal to age of 18.

Example:
#include <stdio.h>
int main () {

/* local variable definition */
inta=10;

/* while loop execution */
while(a<20){
printf(“value of a: %d\n", a);
at+;

}

https://parajulirajesh.com.np/c-programming/ 46/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

return O;

}

Do-while loop: The do-while loop is similar to a while loop but the only difference lies in the do-while loop test condition which is tested at the
end of the body. In the do-while loop, the loop body will execute at least once irrespective of the test condition. In case of do-while, firstly the
statements inside the loop body are executed and then the condition is evaluated. As a result of which this loop is executed at least once even if
the condition is initially false. After that the loop is repeated until the condition evaluates to false. Since in this loop the condition is tested after
the execution of the loop, it is also known as posttest loop. It is also called exit controlled loop means the means the test condition is evaluated
at the end of the loop body.

Syntax:

initialization_expression;
do

{
// body of do-while loop

update_expression;

} while (test_expression);

Example of Do while loop:
#include <stdio.h>

int main() {
inti=0;

do {
printf(“%d\n”,i);
i++;
twhile(i<=5);
return O;

}

https://parajulirajesh.com.np/c-programming/

47/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Difference between while and do-while loop

While do-while
While loop is pre test loop. do-while is post test loop
The statements of while loop may not be | The statements of do-while loop are executed
executed even once atleast once

For loop: Théﬂbﬂ&)p alfows MexecB®Block SPKBemGINERr a rfidfer of DRKR I RETALEBIBND SIS ASIRINRURICONRHIORE, the|use of

for |OOp WILLHQ“I\% QQEEHHF?P hus this Innn is also known as a determinate or definite loop. For loop cansists of three expressions with

: The syntax of while loop is The syntax of do-while loop is as under:-
semicolon$
‘While(condition) Do
{ {
Statements Statements;

for(initializat}gon; test_condition; increment or decrement) { Statements or b?@hﬂ@f’@@n}j ition):

Example: Write a program to write a table of n number given by user. C program to generate Fibonaci series (most important, will apear in

#include<stdio.h> exam question)

int main(){ #include <stdio.h>

int i=1,number; int main() {

printf(“Enter a number: “);

scanf(“%d”,&number); inti, n;

for(i=1;i<=10;i++){

printf(“%d \n”,(number*i)); // initialize first and second terms
} intt1=0,12=1;

return 0;

} // initialize the next term (3rd term)

int nextTerm =1 +12;

/* C program to calculate a Factorial of a given number */ // get no. of terms from user

#include <stdio.h> printf(“Enter the number of terms:);

scanf(“%d”, &n);

int main()

{ // print the first two terms t1 and t2

int num,i; printf(“Fibonacci Series: %d, %d, “, t1, t2);
long fact=T1;

printf("Enter number”); // print 3rd to nth terms

scanf("%d" &num); for (i = 3;i<=n; ++i) {
for(i=T;i<=num;i++) printf(“%d, “, nextTerm);

fact=fact*i; 11 =12

printf(“%ld” fact); 12 = nextTerm;

nextTerm =t1 + t2;
return 0; }

}

https://parajulirajesh.com.np/c-programming/ 48/84

9/7/25, 7:54 PM

Nested Loop

Nested loop: Using a loop inside another loop is called nested loop. C support n times of nested loop. The nested for loop means any type of

loop which is defined inside the ‘for’ loop.

Syntax of Nested loop
Outer_loop

{

Inner_loop

{

// inner loop statements.

}

// outer loop statements.

}

Example of nested loop to print pattern:

%
*kk
*kkk

*kkkk

#include <stdio.h>

int main() {

inti,j, n;

// Ask the user for the number of rows
printf(“Enter the number of rows: “);
scanf(“%d”, &n);

// Outer loop for rows

for(i=1;i<=n;i++) {

// Inner loop for columns (stars in each row)
for (j=1;j <=1 j++){

printf(“*");

}

// Move to the next line after each row
printf(“\n");

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

return 0;

}

49/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

}

return 0;

}

2. Example of nested for loop
#include <stdio.h>

int main()

{

int n;// variable declaration
printf(“Enter the value of n:");

scanf(“%d",&n);

// Displaying the n tables.

for(int i=1;i<=n;i++) // outer loop

{

for(int j=1;j<=10;j++) // inner loop

{

printf(“%d\t",(i*j)); // printing the value.
}

printf(“\n");

}

Explanation of the above code

¢ First, the ‘i’ variable is initialized to 1 and then program control passes to the
i<=n.

e The program control checks whether the condition ‘i<=n"is true or not.

¢ If the condition is true, then the program control passes to the inner loop.

¢ The inner loop will get executed until the condition is true.

» After the execution of the inner loop, the control moves back to the update of
the outer loop, i.e., i++.

¢ After incrementing the value of the loop counter, the condition is checked again,

i.e., i<=n.
¢ If the condition is true, then the inner loop will be executed again.
* This process will continue until the condition of the outer loop is true.

https://parajulirajesh.com.np/c-programming/

50/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

v s 5 input
s 3

...Program finished with exit code 0

Press ENTER to exit m::nsole.l

3. Jump Statements / Loop Interrupts

In C, you can control the flow of loops using loop interrupts such as break, continue, and return. These keywords allow you to alter the normal
flow of control within loops and functions.

Jump statements in C are used to alter the normal sequence of execution of a program. They allow the program to transfer control to a different
part of the code.

Simple definition: Jump statements are used to transfer the control from one part of the program to another part.

Types of Jump Statements in C
mgrbreak]ﬁtat?ment t rminat%gtthe e)&ecution of the loop and the control transferred to the statement immediately following the loop.

€ are four typés of jJump statements:
Bre?kt;srté'-zatﬁment is used inside the loops or switch statement. This statement causes an immediate exit from the loop or the switch case block

in iggr{hﬁagears. If the test condition is to be terminated instantly without testing termination condition, the break statement is useful.

3. goto
It can b? written as
. return

break;

https://parajulirajesh.com.np/c-programming/ 51/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Initialization

Test

Condition
?

Body of Loop

Condition
for break?

Update
Expression

Flowchart of break statement with for loop

Simple Progam example of break statement:

#include<stdio.h>
#include<conio.h>

int main()

{

inti;

for(i=1; i<10; i++)

{

Gantinug statement

if(i==5)
'tl)'PeeaEpntinue statement skips the current iteration of the loop and continues with the next iteration. The continue statement is used inside the

body of loop statement. it is used when we want to go to the next iteration of the loop after skipping the some of the statement of loop.

https://parajulirajesh.com.np/c-programming/ 52/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np
}

gheecHifiference between break and continue is that when a break statement is encountered the loop
Guipinates and the control is transferred to the next statement following the loop, but when a continue
§tatdrhént is encountered the loop is not terminated and the control is transferred to the beginning of the
loop.

Its syntax is:
continue;

Program example using continue:
#include<stdio.h>

int main()

{

inti;

for(i=1;i<=10;i++){
if(i==5){

continue;

}

printf(“%d\n”,i);

}

printf(“out of for loop”);
return O;

output:

0 N o~ WON =

8
10
out of for loop

goto statement

Goto statement in C is a jump statement that is used to jump from one part of the code to any other part of the code in C. Goto statement helps
in altering the normal flow of the program according to our needs. This is achieved by using labels, which means defining a block of code with a
name, so that we can use the goto statement to jump to that label.

Syntax:

https://parajulirajesh.com.np/c-programming/ 53/84

9/7/25, 7:54 PM

label_name:
.statementT;
.statement2;

.statementn;
goto label_name;

Q.Simple program using goto statement

#include<stdio.h>

void main()

{

inta=1;

repeat:
if(a<=10)
printf(" %d",a);
at+;

goto repeat;

}

Output:

12345678910

Function

C Programming - parajulirajesh.com.np

A function is a block of code that performs a specific task when it is called.

The function is also known as procedureor subroutine in other programming languages. Function enable us to write code separately for different

functions.

Syntax:

return_type function_name(parameter list)

{
body of the function

}

Types of function

There are two types of function in C programming:

1. Standard library functions
2. User-defined functions

Standard library functions: Library functions are predefined / built in functions.

For example: printf(), scanf();, getch(), sqrt(), etc. These functions are defined in header files.

User Defined functions: Those functions that are created by user as per his/her need. Such Functions are known as User Defined functions.

https://parajulirajesh.com.np/c-programming/

54/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Function prototype, Definition, and call

¢ Function prototype is also called funciton declaration. Function declaration is done above of the main function. Passing arguments in the
function declaration and function definition are formal parameters which copied the values from actual parameters. Formal parameters are
always in variables.

¢ Function Definition is a block of code that define the specific task that are enclosed with { }.

e Function call is done inside the main function. Passing the arguments while calling function is actual parameters. Actual parameters can
be both values or variables.

Define actual and formal parameters?

Actual and formal parameters are two different forms of parameters that we use while declaring, defining and invoking a function. The actual
parameter is the one that we pass to a function when we invoke it. On the other hand, a formal parameter is one that we pass to a function when
we declare and define it.

BASIS FOR
ACTUAL PARAMETER FORMAL PARAMETER
COMPARISON
Definiti They are actual values passed to a function on which They are the variables in the function definition that would
efinition

the function will perform operations receive the values when the function is invoked
Occurrence It occurs when we invoke a function It occurs when we declare and define a function
Provided by Either by the programmer or by the user Only by programmer

Data types are not mentioned with the actual .
Data types Data types are mentioned along the formal parameters

parameters
Form It can be a value or a variable It is always a variable

int add (int x, int y) {

Example add (a, b); //body

Different Ways of Calling a Function:

Depending on whether the function accepts arguments or not and returns a value or not, there can be four different aspects of C function calls,
which are:

https://parajulirajesh.com.np/c-programming/ 55/84

9/7/25, 7:54 PM

// Example of Function Without arguments and
without return

#include<stdio.h>
void greater();

void greater()
{
int a,b;
printf(“enter two numbers:”);
scanf(“%d%d",&a,&b);
if(a>b)
{
printf(“%d is greater”, a);
}
else
{
printf(“%d is greater”, b);
}
}

int main(){
greater();
return O;

TO perferm sum

// Example of Function Without arguments and
without return

#include<stdio.h>
void sum();

void sum()

{

inta,b, c;

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

//Example of function with arugments and with
return

#include<stdio.h>

int greater();

int greater(int a, int b)
{

if(a>b)

return a;

else

return b;

}

int main()

{

intab,c;

printf(“enter a and b:");
scanf(“%d%d",&a,&b);
c=greater(a,b); //
printf(“greater is %d”,c);
return O;

}

To Perform sum

//Example of function with arugments and with
return

#include<stdio.h>
int sum(int int);
int sum(int x, int y)
{

int z=x+y,

return z;

//Example of Function with argument without
return

#include<stdio.h>
void greater(int x, int y);

void greater(int a, int b) // formal parameters
{
if(a>b)
{
printf(“%d is greater”, a);
}
else
{
printf(“%d is greater”, b);
}
}
int main(){
int xy;
printf(“enter two numbers:”);
scanf(“%d%d”,&x,&y);
greater(x,y); // actual parameters are copied to
formal parameter
return 0;

To Perform Sum
//Example of Function with argument without
return

#include<stdio.h>
void sum(int int);
void sum(int x, int y)
{

ints;

S=X+Y,

printf(“sum is %d”,s);

// Example of Function Without arguments and
with return

#include<stdio.h>
int greaternumber();

int greaternumber(){

int a,b;

printf(“enter two numbers:\n”);
scanf(“%d%d”,&a,&b);

if(a>b)

return a;

else

return b;

}

int main()

{

int greater;
greater=greaternumber();
printf(“%d is greater”,greater);
return 0;

To perform sum

// Example of Function Without arguments and
with return

#include<stdio.h>
int sum();

int sum(){
intxy,s;
printf(“enter two numbers:\n”);

56/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

‘intf(“enter two numbers:"); } } scanf(“%d%d",&a,&b);
:anf(“%d%d”,&a,&b); int main() int main() S=X+y;
c=a+b; { { return's;
printf(“Sum is %d”, c); intab,s; int a,b,s; }
int main(){ printf(“enter two number\n:"); printf(“enter two number\n:"); int main()
sum(); scanf(“%d%d”, &a, &b); scanf(“%d%d”, &a, &b); {
return 0; int a;
s=sum(a,b); s=sum(a,b); a=sum();
} return o; printf(“%d is sum”,a);
prinftf(“%d is sum”, s); } return 0;
return o;
} }

There are two methods to pass the data into the function in C language, i.e., call by value and call by reference.
HOW TO CALL C FUNCTIONS IN A PROGRAM?

1. Call by value

2. Call by reference

1. CALL BY VALUE:

In call by value method, the value of the variable is passed to the function as parameter.

The value of the actual parameter can not be modified by formal parameter.

Different Memory is allocated for both actual and formal parameters. Because, value of actual parameter is copied to formal parameter.
Note:

Actual parameter — This is the argument which is used in function call.

Formal parameter - This is the argument which is used in function definition

EXAMPLE PROGRAM FOR C FUNCTION (USING CALL BY VALUE):

] “« n

In this program, the values of the variables “m” and “n” are passed to the function “swap”.

un

These values are copied to formal parameters “a” and “b” in swap function and used.

#include<stdio.h>

// function prototype, also called function declaration
void swap(int a, int b);

int main()

{

intm =22, n =44,

// calling swap function by value

printf(" values before swap m = %d \nand n = %d”, m, n);
swap(m, n);

}

void swap(int a, int b)

{

int tmp;

tmp = a;

https://parajulirajesh.com.np/c-programming/ 57/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np
a=b;
b =tmp;
printf(" \nvalues after swap m = %d\n and n = %d”, a, b);

}

2. CALL BY REFERENCE:

In call by reference method, the address of the variable is passed to the function as parameter.
The value of the actual parameter can be modified by formal parameter.

Same memory is used for both actual and formal parameters since only address is used by both
parameters.

EXAMPLE PROGRAM FOR C FUNCTION (USING CALL BY REFERENCE):

w_n “ . n

In this program, the address of the variables “m” and “n” are passed to the function “swap”.

These values are not copied to formal parameters “a” and “b” in swap function.
Because, they are just holding the address of those variables.

This address is used to access and change the values of the variables.
#include<stdio.h>

// function prototype, also called function declaration

void swap(int *a, int *b);

int main()

{

intm =22, n =44,

// calling swap function by reference

printf(“values before swap m = %d \n and n = %d",m,n);

swap(&m, &n);

}

void swap(int *a, int *b)

{

int tmp;

tmp = *a;

*a = *b;

*b = tmp;

printf(“\n values after swap a = %d \nand b = %d”", *a, *b);

}

No. Call by value Call by reference

1 A copy of the value is passed into the function

Changes made inside the function is limited to the function only. Changes made inside the function validate outside of the function
2 The values of the actual parameters do not change by changing also. The values of the actual parameters do change by changing

the formal parameters. the formal parameters.

https://parajulirajesh.com.np/c-programming/

An address of value is passed into the function

58/84

9/7/25, 7:54 PM

Actual and formal arguments are created at the different memory

location

swapping.c
1 #include<stdio.h>
2 void swap(int, int);

3 void swap(int x, int y)

48 {

S int temp;

6 temp=x;

7 x=Y3

8 y=temp;

9 printf("values after swapping are %d,%d",x,y);
10 -}

11H int main(){

12 int a,b;

13 printf("enter two numbers for swapping:\n");
14 scanf("%d%d",&a,&b);

15 printf("values before swap are: %d,%d\n",a,b);
16 swap(a,b);

17 return 0;

C:\Users\Asus\Desktop\C pro. X i || 55

enter two numbers for swapping:
10

30

values before swap are: 10,30
values after swapping are 30,10

Z Process exited after 5.003 seconds with return value 0
Press any key to continue .

Recursion

Function that call itself is called recursion. While using recursion, programmers need to be careful to define an exit condition from the function,

otherwise it will go into an infinte loop.

Syntax:

void recursion() {

recursion(); /* function calls itself */
}

int main()

{

recursion();

}

//Example of recursion program with argument with return.

#include<stdio.h>
int factorial(int x); //function declaration with argument
int main() /main function

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

Actual and formal arguments are created at the same memory
location

swapping.c
1 #include<stdio.h>
2 void swap(int *x, int*y);

3 void swap(int *x, int *y)

4B {

5 int temp;

6 temp=*x;

7 *x=¥y;

8 *y=temp;

9 printf("values after swapping are %d,%d",*x,*y);
ie -}

11H int main(){

12 int a,b;

13 printf("enter two numbers for swapping:\n");
14 scanf("%d%d" ,8a,&b);

15 printf("values before swap are: %d,%d\n",a,b);
16 swap(&a,&b);

17 return 0;

18 - }

C:\Users\Asus\Desktop\C pro. X o

enter two numbers for swapping:

values before swap are: 10,50
values after swapping are 50

e R Process exited after 6.964 seconds with return value 0

f& Press any key to continue

//Example of recursion function to find n terms of ficonacci series

#include <stdio.h>
int fibonacci(int); // function declaration

59/84

9/7/25, 7:54 PM

{

int a; //declaration for input n number to find its factorial
printf(“enter number to find factorial:");

scanf(“%d",&a); // taking user input number

int fn; /assume variable to store function call, you also can call it
directly.

fn=factorial(a); //function call by value with actual argument
printf(“factorial is %d", fn); //displaying function call value

return O;

}

factorial(x)//function defintion with formal argument

{

if(x==1)
return 1;
else

return x*factorial(x-1); //function call itself

}

Unit-5 Array, Pointer String

Array:

C Programming - parajulirajesh.com.np

//function definition section start
int fibonacci(int x) {

if(x == 0) {

return 0;

}

if(x == 1) {

return 1;

}

else

return fibonacci(x-1) + fibonacci(x-2); /function call itself

}

//main function section start
int main() {

int a;

printf(“enter a number:");
scanf("%d",&a);

inty;

for(y=0;y<a; y++) {
printf(“%d\n”, fibonacci(y));

}

return O;

}

An array is a collection of values of similar kinds of data types. Values in array accessed using array name with subscripts in brackets|[]. Syntax

of array declaration is:

data_type array_namel[size];

#include<stdio.h>

int main()

{
inti,a[10]={10,20,39,58,19};
for(i=0;i<10;i++)

{

printf(“%d\n”,a[i]);

https://parajulirajesh.com.np/c-programming/

60/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np
}

return O;
}
Output:
10

20

39

58

9

o O o o o =

Declaration and initialization of array
An array is a variable that can store multiple values. For example, if you want to store 100 integers, you can create an array for it.

dataTypearrayName[arraySize];
int data[100];

It is possible to initialize an array during declaration. For example,
int mark[5] = {19, 10, 8,17, 9};

You can also initialize an array like this.
int mark(] = {19, 10, 8,17, 9};

Accessing array

Array can be accessed using array-name and subscript variable written inside pair of square brackets [].
for example:

arr[3] = Third Element of Array

arr[5] = Fifth Element of Array

arr[8] = Eighth Element of Array

// Program to take 5 values from the user and store them in an array
// Print the elements stored in the array

#include <stdio.h>

int main()

{

int i, array[5];

printf(“Enter 5 integers: “);

// taking input and storing it in an array

https://parajulirajesh.com.np/c-programming/ 61/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np
for(i = 0;i < 5; i++)
{
scanf(“%d”", &arrayli]);
}
printf(“printing those values:);
// printing elements of an array
for(i=0;i<5;++i)
{
printf(“%d\n”, arrayli]);
}
return 0;

}

//C Program to find smallest element in an array
#include<stdio.h>

int main() {

int a[30], i, num, smallest;

printf(“\nEnter no of elements :");

scanf(“%d", &ium); //Read n elements in an array
for (i = 0; i < num; i++)

scanf(“%d", &ali]); //Consider first element as smallest
smallest = a[0];

for (i = 0; i < num; i++) {

if (a[i] < smallest) {

smallest = a[i]; } } // Print out the Result
printf(“\nSmallest Element : %d”, smallest);
return (0);

}

https://parajulirajesh.com.np/c-programming/ 62/84

9/7/25, 7:54 PM

ginclude
int main()
(

int wa”ks[l;],

int

for(i=0;ic1@;i++){ enter marks of
£(" ShtE! marks uf st u ts: " i+1)3 . enter marks of

Multldln‘i nsi array moré than one indtk
1efk &anﬁ enter marks of
fouz 83i<1@3i+s) enter marks of
datatypeanay nmneﬂﬂﬂ enter marks of
''''' enter marks of
\ enter marks of

1'Fura"ks [i]>marks[j]) e

of
of

VooOoJ0hoEwWwN

C Programming - parajulirajesh.com.np

C:\Users\Asus\Desktop\C pro X

students:
students:
students:
students:
students:
students:
students:
students:

10 sturlants:

C:\Users\Asus\Desktop\add2. X

Resultant Matrix:
6 8

Process exited after 0.03

em c enter marks]
erte a F{ ﬁgfam tO add 2*2 madiie 0 Ctutents ir, 2scending order:u5
marks[j]=temp; 50
) '—‘ﬁclqdw <stdio.h>
print . r
foru int maln() :
g * int rat"1x1[2][] = £{i, 23,
retur [3 41, 1.
} L=> JJiJ
Declaration and initialization of the
int matrix2[2][2] = {{5s 6}
(75 8}};
int result[1[2];
int i,j;
Adding corresponding elements of mat:
for(i =8; 1 < 2; i++) {
for(j = @5 j < 25 j++) {
result[i][j] = matrixi[i][]j] + matrix2[i][j];
}
1
J
pr lntf("Resultant Hat:lx \n")'
for(i = @; i < 2; i++) |
for(j = @; j < 23 j++) {
printf("%d ", result[i][j]);
1
J
printf("\n");
}
return @;
.
}

Press any key to continue

C program to add two 2x2 matrices based on user input ?

https://parajulirajesh.com.np/c-programming/

ray:

63/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

#include<stdio.h>
int main()

1{
int matrix1[2][2], matrix2[2][2], result[2][2],i,];
printf("enter the values of first matrix:");
] for(i=@;i<2;i++){
] for(j=0;j<2;j++){
scanf("%d", &matrix1[i][j]);
- } } C:\Users\Asus\Desktop\addm X = v
printf("enter the values of second matrix:");
] for(i=0;i<2;i++){ enter the values of first matrix:1
] for(j=0;3j<2;j++){
scanf("%d" ,&matrix2[i][j]);
E }
E }
printf("add two matrices:");
] for(i=0;i<2;i++){
] for(j=0;3<2;j++){
result[i][jl=matrix1[i][j]+matrix2[i][i]; REGLERSINIEYeRa=r34:]
printf("%d\t",result[i][j]);
= }
printf("\n");
- } Process exited after 6.093 seconds with return value 0
Press any key to continue . . . |
return 9;
il

c program to multiply 3*3 matrices by taking matrix values from user
input.

https://parajulirajesh.com.np/c-programming/ 64/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

| mmui.c C:\Users\Asus\Desktop\C pro. X + | =

int main(

Enter first 3%3 matrix element: 1

rite-a:¢ program:to:implementfg
* 6

for(i=e; i<3; i+

(D .
int af2]] El3)[2)sres[2])[2],5,])k,5um=€}
printf{ “enter first matrix elements:"
] for{i=€;lcl;ies
f 2
3 ™ C:\Users\Asus\Desktop\C pro. X == v

enter first matrix elements:1
i iri-:*-"enter second matrix elements:™); 2
or (15855435 1+4)
A A 3
: 4
C st 5
8 3 6
BOSatf] T Do St enter second matrix elements:1
3 I For 2; 3+ 2
J 3
ror i 4
] T . 5
s S e 6
B add two matrices:22
L fer(iseiled;iee
] for
- 3 i{;ﬁ SRS Process exited after 13.72 seconds with return value ©

Press any key to continue

https://parajulirajesh.com.np/c-programming/ 65/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np
// ¢ program to multiply ml1[3][4], m2[4][2]
#include<stdio.h>
int main()

i
int res[3][2],m1[3][4],m2[4][2],1,],k,sum=0;
printf("enter the values of first matrix:");
for(i=0;i<3;i++)
{
for(j=0;j<4;j++)
1

¥

scanf("%d",&m1[i][i]);

h

printf("enter the values of second matrix:");
for(i=0;i<4;i++)
1

for(j=0;j<2;j++)

{

¥

scanf("%d" ,&m2[i][i]);

)

printf("performing multiplication™);
for(i=0;i<3;i++)

1

for(j=0;j<2;++)

i
sum==0;
for(k=0;k<4;k++)

1
sum=sum+ml[i][k]*m2[k]1[i];
res[i][j]=5um;

https://parajulirajesh.com.np/c-programming/

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

printf(“displaying result of multiplication™);
for(i=0;i<3;i++)

Differencle Between Malloc and Calloc Memory Allocation.

Rl

Malloc Memory Allocation Calloc Memory Allocation

Malloc Stands for memory allocation. Calloc Stands for contiguous memory
allocation.

Malloc creates a single memory block of | Calloc can allocate multiple memory

a user-specified size. blocks to a variable.

The malloc function is initialized to The calloc function are always initialized

garbage values if no value given. to Zero.

Malloc is faster in speed. Calloc is slower than malloc in speed.

The number of arguments is 1 i.e The number of arguments is 2 i.e

byte size. number of memory blocks and size of
memaory block.

Syntax: Syntax:

int*ptr=(int*)malloc(n*sizeof(int)); int*ptr=(int*)calloc(n,sizeof(int));

#include <stdio.h>
#include <stdlib.h>

int main() {
int *num1, *num?2, *sum;

// Allocating memory for integers using malloc
num1 = (int*) malloc(sizeof(int));

num?2 = (int*) malloc(sizeof(int));

sum = (int*) malloc(sizeof(int));

if (num1 == NULL || num2 == NULL || sum == NULL) {
printf(“Memory allocation failed!\n");

return 1;

}

// Input numbers

printf(“Enter first number: “);
scanf(“%d", num1);
printf(“Enter second number: “);
scanf(“%d”, num2);

https://parajulirajesh.com.np/c-programming/ 67/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

// Perform addition

*sum = *num1 + *num2;

// Display result
printf(“Sum: %d\n”, *sum);

// Free allocated memory
free(num1);

free(num?2);

free(sum);

return 0;

}

Concept of Pointer, pointer address, dereference, declaration,assignment, intializaion

Pointer

A pointer is a variable that stores the memory address of another variable as its value. Pointer variable is always preceded by * operator.
if a pointer variable p is declared as : int *p;

it signifies p is pointer variable and it can store address of integer variable (i.e. it can not store address of other type’s variables.

* operator is deference operator

& operator is reference operator

An indirection operator, is an operator used to obtain the value of a variable to which a pointer points. While a pointer pointing to a variable
provides an indirect access to the value of the variable stored in its memory address, the indirection operator dereferences the pointer and
returns the value of the variable at that memory location. The indirection operator is a unary operator represented by the symbol (*). The
indirection operator is also known as the dereference operator.

Valid Examples:
int *p;

int num;
p=#

Invalid Examples:

int *p;

float num;

p=# /* invalid pointer variable p cannot store address of float variable */

Pointer Declaration
A pointer variable is declared as follows:

https://parajulirajesh.com.np/c-programming/ 68/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

Syntax:
data_type * variable_name;

here, *is called indirection or dereference operator and variable_name is now pointer.

Example:

int *x;

float *y;
char *rajesh;

Simple Program Example:
#include<stdio.h>

int main()

{

int a=50;

int* b=&a;

printf(“%d is value of a variable\n”,a);
printf(“%d is the value of pointer\n”,*b);

printf(“%p is the memory address of pointer variable\n”, b);
printf(“%p is the address of pointer\n”,&a);

return O;

}

Output:

50 is value of a variable

50 is the value of pointer

000000000062FE14 is the memory address of pointer variable
000000000062FE14 is the address of pointer

Write a ¢ program to add to numbers using Pointer

https://parajulirajesh.com.np/c-programming/ 69/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

pointer_sum.c

#include<stdio.h>
int main(){
int a,b,sum;
printf("enter two numbers:\n");
scanf("%d %d",&a, &b);
int *x=8&a;
int *y=8b;
sum=*x+*¥y;
printf("sum is %d",sum);
return 0;

C:\Users\Asus\Desktop\C proo X =+

enter two numbers:
30

50

sum is 80

f Process exited after 6.852 seconds with return value
Press any key to continue . . .

Pointer Arithmetic

Pointer Arithmetic refers to arithmetic operations on pointers. Since pointers store memory addresses, Pointer Arithmetic operations help
navigate through memory locations efficiently.

1. Types of Pointer Arithmetic

You can perform the following operations with pointers in C:

1. Increment (ptr++) — Moves to the next memory location.

2. Decrement (ptr--) — Moves to the previous memory location.

3. Addition (ptr + n) — Moves n positions forward.

4. Subtraction (ptr - n) — Moves n positions backward.

5. Pointer difference (ptr2 - ptri) — Finds the number of elements between two pointers.

1:Pointer Increment & Decrement

https://parajulirajesh.com.np/c-programming/ 70/84

9/7/25, 7:54 PM

#include <stdio.h>

int main() {

intarr[] ={10, 20, 30, 40, 50};

int *ptr = arr; // Pointer to the first element
printf(“Initial pointer value: %d\n”, *ptr);
ptr++; // Move to the next element
printf(“After increment: %d\n”, *ptr);

ptr—; // Move back to the first element
printf(“After decrement: %d\n”, *ptr);
return O;

}

Output:

Initial pointer value: 10
After increment: 20
After decrement: 10

2: Pointer Addition and Subtraction

#include <stdio.h>

int main() {

intarr[] ={5, 10, 15, 20, 25};

int *ptr = arr; // Pointer to the first element
printf(“Value at ptr: %d\n”, *ptr);

ptr = ptr + 2; // Move two positions forward
printf(“After ptr + 2: %d\n”, *ptr);

ptr = ptr — 1; // Move one position backward
printf(“After ptr — 1: %d\n”, *ptr);

return O;

}

STRINGS:

C Programming - parajulirajesh.com.np

#include <stdio.h>

int main() {

int num = 10;

int *ptr = &um,; // Pointer pointing to num
printf("Address of num: %p\n”, ptr);

ptr = ptr + 1; // Move the pointer forward by 1 int (4 bytes)
printf("Address after addition: %p\n”, ptr);

ptr = ptr — 1; // Move the pointer back to original position
printf("“Address after subtraction: %p\n”, ptr);

return O;

}

An array of characters are known as Strings. There are various built-in string handling functions in c. Some of them are:

1. strepy()
2. strcat()
3. stremp()

https://parajulirajesh.com.np/c-programming/

71/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

4. strempi()
5. strupr()
6. striwr()
7. strrev()

#include <stdio.h>
#include <string.h> // Required for string handling functions

// Main function

int main() {

// Declare string variables
char str1[50] = “Hello”;
char str2[50] =" World”;
char str3[50];

// strcpy: Copying string
strepy(str3, str1); // Copy content of str1 into str3
printf(“After strcpy, str3: %s\n", str3); // Output: Hello

// strcat: Concatenate strings
strcat(str1, str2); / Concatenate str2 to str1
printf(“After strcat, str1: %s\n”, str1); // Output: Hello World

// strlen: Find the length of a string
int len = strlen(str1); // Get the length of str1
printf(“Length of str1: %d\n", len); // Output: 12

// strupr: Convert string to uppercase
strupr(str1); // Convert str1 to uppercase
printf(“After strupr, str1: %s\n”, str1); // Output: HELLO WORLD

// strlwr: Convert string to lowercase
striwr(str1); // Convert str1 back to lowercase
printf("After strlwr, str1: %s\n", str1); // Output: hello world

// strrev: Reverse the string
strrev(str1); / Reverse str1
printf(“After strrev, str1: %s\n”, str1); // Output: dirow olleh

return O;

}

https://parajulirajesh.com.np/c-programming/

72/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

1 #include<stdio.h>

2 int main()

3E R

4 char str[20];

5 printf("enter string:\n");

6 gets(str); //read string with space by compiler as scanf function
7 printf("entered string is: ");

8 puts(str); //display string

9 return 0;

10 - |}

C:\Users\Asus\Desktop\C pror X B e

enter string:
rajesh parajuli

entered string is: rajesh parajuli

#include<st

Process exited after 5.13 seconds with return value ©
Press any key to continue

struct studsg

{
Structure:

char name[30];

?h@rﬁﬁﬂ'&%ﬁ@%the collection of different data types grouped under the same name using the struct keyword. It is also known as the user-
H‘é[fﬁge% data type that enables the programmer to store different data type records in the Structure. Furthermore, the collection of data elements
}hside the Structure is termed as the member.

int main() {
struct student st;
stid=1;

// Use strcpy to assign string values to character arrays
strepy(st.name, “rajesh”);
strcpy(st.gender, “male”);

st.age = 28;

// Print the struct values

printf(“id is %d\n”, st.id);
printf(“name is %s\n", st.name);
printf(“gender is %s\n”, st.gender);
printf(“age is %d\n”, st.age);

https://parajulirajesh.com.np/c-programming/

73/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

return O;

}

Write a ¢ program using structure to input staff id,name, and the salary of 50 staffs. Display staff
id, name and salary of those staff whose salary range from 25 thousands to 40 thousand.

#include<stdio.h>
struct staff{

int id;

char name[30];
double salary;

%

int main()

struct staff s[50];

inti;

//input data of 50 students
for(i=0;i<50;i++)

printf(“\n%d staff details: “i+1);
printf(“\nenter staff id:);
scanf(“%d”, &slil.id);
printf(“enter staff name: “);
scanf(“%s”, s[il.name);
printf(“enter staff salary : “);
scanf(“%lf”, &sli].salary);
}
//printing 50 students entered details with given condition
printf(“\nStaff with salary between 25,000 and 40,000:\n");
for (i = 0; i < 50; i++) {
if (s[i].salary >= 25000 && sli].salary <= 40000) {
printf(“\n%d staff details: “,i+1);
printf(“\nstaff id:%d",s[i].id);
printf(“\nstaff name:%s”,sli].name);
printf(“\nstaff salary:%If",s[i].salary);

}
}
return O;
}

https://parajulirajesh.com.np/c-programming/ 74184

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

Simple ¢ program using structure:

struct.c

1 #include<stdio.h>
2 struct student

3 ¢

int s_id;

char s_name[20];
char s_address[28];
int s_marks;

main(){

struct student st;
printf("enter student id:\n");
scanf("%d" ,&st.s_id);
printf("enter
scanf("%s",st
printf("enter

scanf("%s",

st

printf("enter
scanf("%d", &st.s_marks);

printf("Displaying student information:\n");

printf("%d
printf("%s
printf("%s
printf("%d
return @;

is
is
is
is

student name:\n");
.s_name):

student adress:\n");
.s_address);

student marks:\n");

id\n", st.s_id);

name\n", st.s_name);
address\n", st.s_address);
marks\n", st.s_marks);

C\Users\Asus\Desktop X == |~

enter student id:

il

enter student name:
rajesh

enter student adress:
sukhad

enter student marks:
80

Displaying student information:
A e 1 |

rajesh is name

sukhad is address

Process exited after 27.04 seconds with retur
n value ©
Press any key to continue .

Write a ¢ program to store information of 5 employee(empid, name,

salary) and display it using structure variable. (Most Important for Exam

+2, BCA, BICTE)

https://parajulirajesh.com.np/c-programming/

75/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np

EafE & s BE EE BO0BR8 ¢ R dsk | o .
m globals)

[*] struct.c simplestructureofc.c [*] structureprogram.c

1 #include<stdio.h>

2 struct employee

38 {

4 int e_id;

5 char e_name[208];

6 float e_salary;

sl

8] int main(){

9 struct employee e[5];

10 int i;

11 for(i=0;i<5;i++)

125 {

13 printf("enter employee's id, name and salary\n");

14 scanf("%d %s %f", &e[i].e_id, e[i].e_name, &e[i].e_salary);

15 }

16 print entered details

17 for(i=0;i<5;i++)

184 {

19 printf("%d\n %¥s\n %f", e[i].e_id, e[i].e_name, e[i].e_salary);

20 }

21 return 0;

22 =~}

riler lﬁ Resources [ﬂ]] Compile Log 7 Debug @ Find Results

Structure pointer

https://parajulirajesh.com.np/c-programming/

enter employee's

1
rajesh
5000

enter employee's

2
suman
6000

enter employee's

3
EUEH]
7000

enter employee's

4
prabin
8000

enter employee's
5
FEGUEH
9000

1

rajesh
5000.0000002

suman
6000.0000003
akash
7000.0000004
prabin
8000.0000005
ganesh
9000.000000

76/84

9/7/25, 7:54 PM

C Programming - parajulirajesh.com.np
[*] sa.c structurepointer.c

3 1 #include<stdio.h>
V2 struct student
= 3K {
‘4 int s_id;
« 5 char s_name[28];
—1 A= s
7 int main()
r 8H {
— 9 struct student s;
‘10 struct student *ptr = &s;
i11 print¥("enter student id:\n");
_ilz scanf("%d",&(*ptr).s_id);
13 printf("enter student name:\n");
{14 scanf("%s",(*ptr).s_name);
(15 printf("the student id is %d\n", (*ptr).s_id);
:16 printf{"the student name is %s", ptr->s_name);
37 return @;
118 L }

C:\Users\Asus\Desktop\C pror X o=

enter student id:

5

enter student name:
« W Res rajesh
; l the student id is 5
Fiélﬂan the student name is rajesh

Am;%mmwps Process exited after 6.859 seconds with return value 0
N Press any key to continue . . . ! ing,

writing, moving to'd)

File handling is the process of storing data in the form of input or output produced by running C programs in data file for future reference and
analysis. File handling provides a mechanism to store the output of a program in a file and to perform various operations on it.
File handling concept provides various operations like creating a file, opening a file, reading a file or manipulating data inside a file etc.

Why file handling?
The data stored in the various of a program will be lost once the program is terminated because they are stored in the Random Access

Memory(RAM) which is volatile memory. So, if we want store that data(input/output) used in the program permanently inside the secondary
storage device so that, we can access these data from there whenever it is needed file handling concept is important.

https://parajulirajesh.com.np/c-programming/

77/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

File handling in C enables us to create, update, read, and delete the files stored on the local file system through our C program. Some operations
can be performed on afile.

¢ Creation of the new file
¢ Opening an existing file
¢ Reading from the file

e Writing to the file

¢ Deleting the file

C provides a number of build-in function to perform basic file operations:

e fopen() -create anew file or open a existing file
e fclose() -closeafile

e getc() -readsacharacter fromafile

e putc() -writesacharactertoafile

e fscanf() -reads aset of datafromafile

e fprintf() -writesasetof datatoafile

e getw() -readsainteger fromafile

e putw() -writesaintegertoafile

e fseek() -setthe position to desire point

e ftell() - gives current position inthe file

e rewind() -setthe positionto the beginning point

Various File opening modes in ¢

https://parajulirajesh.com.np/c-programming/

78/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

- open afile in read mode

e w -opensor create a text file in write mode

e a -opensafileinappend mode

e r+ -opens afilein both read and write mode
e a+ -opensafilein both read and write mode

e w+ -opens afilein both read and write mode

File Operation Modes:
The different file m n ning fil

If the file doesn't exist then this mode creates a new file for writing, and if the file already exists then

“w” (write) the previous data is erased and the new data entered is written to the file.
This mode is used for opening an existing file for reading purpose only. The file to be opened must
“” (read) exist and the previous data of the file is not erased.
If the file doesn't exist then this mode creates a new file and if the file already exists then the new data
“a” (append) entered is appended at the end of existing data. In this mode, the data existing in the file is not erased as
in II ki) mode

This mode is same as “w” mode but in this mode we can also read and modify the data. If the file
w+” (write + read) doesn't exist then a new file is created and if the file exists then previous data is erased.

This mode is same as “r”" mode but in this mode we can also write and modify existing data. The file to
“r+” (read + write) be opened must exist and the previous data of file is not erased. Since we can add new data and modity
existing data so this mode is also called update mode.

Cre atl a ﬁ 1“5'[(: same as the “a” mode but in this mode we can also read the data stored in the file. If the
(appen read} ile doesnt exist, a new file is created and if the file already exists then new data is appended at the end

. nf avicting data Wa pannnt madifu avicting data in thic mada
[*] createfileinc.c

1 //¢ program to creote a file
#include<stdio.h>
int main(){
FILE *ptr=NULL; //declare file pointer ond ossigned it to NULL value becouse of not to store gorbage volue
ptr=fopen("rajesh.txt","w"); //create o text file named rojesh
fclose(ptr); //closing a Ffile with providing pointer variable os argument
return 8;

weNOwEwWwN

https://parajulirajesh.com.np/c-programming/ 79/84

9/7/25, 7:54 PM

Write a ¢ program to write name, roll no and marks of students in file

using fprintf function.

Write a ¢ program 10 store

filehandlingdatareading.c

#include<stdio.h>
int main()

r

| 8

FILE *fp;

char name[28];

int rollno;

float marks;
fp=Ffopen("ram.txt", "w");
if(fp==NULL)

I

1

C Programming - parajulirajesh.com.np

printf("File can not open.");

1

J

printf("Enter Name: ");

gets(name);

printf("Enter roll.no: ");
scanf("%d",&rollno);

printf("Enter marks: ");
scanft("%f",&8marks);

printf("Now writing data into file..... i L

fprintf(fp, "Name=%s\nRoll.no=%d\nMarks=%.1f",name,rollno,marks);

fclose(fp):
getch();
return 8;

File Edit View

Name=rajesh
Roll.no=5
Marks=10.0

important for +2, BCA, BICTE, BIT)

https://parajulirajesh.com.np/c-programming/

80/84

9/7125, 7:54 PM C Programming - parajulirajesh.com.np

#include<stdio.h>
struct student

I
L

int st_id;
int st_name[28];
I
int main(){
FILE *ptr;
struct student s[5];
int i;

for(i=@;1i<5;i++)
r

L
printf(“enter id and name of students:");
scanf("%d %s",8s[i].st_id,s[i].st_name);

1
J
//to write these information on our file
ptr=fopen("studentfile.txt", "w");
if(ptr==NULL)
{
printf("file not open”);
}
for(i=08;1i<5;i++)
{
fprintf(ptr,"Id=%d, Name=%s\n",s[i].st_id, s[i].st_name);//storing data into file

st_name

C:\Users\Asus\Desktop\C pro. X += | s Ed]t V]ew
enter id and name of students:1
rajesh

enter id and name of students:
suman

enter id and name of students:
akash

enter id and name of students:
aashish

enter id and name of students:
mahendra

Name=rajesh
Name=suman
Name=akash
Name=aashish

Name=rajesh
Name=suman
Name=akash
Name=aashish
Name=mahendra

Name=mahendra

Process exited after 41.1 seconds with return value ©
Press any key to continue . . .

Formatted input output in file handling in ¢

Formatted Input and Output in File Handling (C) In C, file handling functions can also support formatted input and output, just like printf() and
scanf() work for standard input and output. For files, we use fprintf() and fscanf() for formatted writing and reading, respectively.

e fprintf() is used to write formatted data to the file.

https://parajulirajesh.com.np/c-programming/ 81/84

9/7/25, 7:54 PM

s fscanf() is used to read formatted data from the file.
o fprintf(file, “Age: %d\n", age);
« fscanf(file, “Age: %d\n", &age);

#include <stdio.h>

int main() {

FILE *file;

int age = 30;

float salary = 55000.50;

// Open file for writing

file = fopen(“formatted_data.txt”, “w");
if (file == NULL) {

printf(“Error opening file for writing.\n");
return 1;

}

// Write formatted data to the file
fprintf(file, “Age: %d\n”, age);
fprintf(file, “Salary: %.2f\n", salary);

// Close the file after writing
fclose(file);

// Open file for reading

file = fopen(“formatted_data.txt”, “r");

if (file == NULL) {

printf(“Error opening file for reading.\n");
return 1;

}

// Read formatted data from the file

int read_age;

float read_salary;

fscanf(file, “Age: %d\n", &read_age);
fscanf(file, “Salary: %f\n", &read_salary);

// Print the read data

printf(“Data read from file:\n");
printf("Age: %d\n”, read_age);
printf(“Salary: %.2f\n", read_salary);

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

82/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

// Close the file after reading
fclose(file);

return O;

}

Error handling

File Handling Errors: When working with files, always check if a file is successfully opened. If fopen() returns NULL, the file couldn't be opened.
Example:

FILE *file = fopen(“example.txt”, "r");

if (file == NULL) {

printf(“Unable to open a file.\n");
return 1; // Exit program with an error code

}

File Operation

Basic File Operations in C
In C, file operations are done using the stdio.h library.

1. Opening a File (fopen): To open a file, use the fopen() function. You need to specify the file name and mode (r, w, a, etc.).
Example:

FILE *fopen(“xyz.txt”, “r"); //where xyz.txt is file and r is reading mode of the file
modes:

r: Read (file must exist)

w: Write (create file or overwrite)

a: Append (add data at the end)

2. Writing to a File (fprintf, fputs): To write data to a file, use fprintf() or fputs().

3. Reading from a File (fscanf, fgets): To read from a file, use fscanf() or fgets().

4. Closing a File (fclose)

https://parajulirajesh.com.np/c-programming/ 83/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

#include <stdio.h>
int main() {
FILE *file=NULL;
char ch;
// Open the file in read mode
file = fopen("grade.txt", "r");
// Check if file exists
if (file == NULL) {
printf("Error: Unable to open file!\n");
return 1;
}
printf("File content:\n");
// Read and display characters until EOF (End of File)
while ((ch = fgetc(file)) != EOF) {
putchar(ch);
}

// Close the file

fclose(file) ;]

maturnn O
Rajesh Parajull Useful Links Worked with Location
e +977-9847546279 > Home > BidhyaTech Ghodaghodi Municipality-1,
& parajulirajesh2072@gmail.com > Services > JKArts Kailali Nepal

> Contact Me > MastaSoftsolution S
9 Yy O > Terms & Conditions) Ghodaghodi Multiple View|ar'g‘e'm:,;;“‘-..--,‘h -
Campus e e o D_hgg%dhi;

Sgogle g
Map data ©2025 Google &

Copyright © 2025 parajulirajesh.com.np | Powered by parajulirajesh.com.np

https://parajulirajesh.com.np/c-programming/ 84/84

