
9/7/25, 7:54 PM

Rajesh Parajuli

\ +9779847546279

Home About Me

Syllabus

Online Compiler

Introduction of Programming

Language

Assembler, Compiler and

Interpreter

Syntax & Semantics

Features of Good Programme

Unit2 History of C Program

Basic Structure of C program

Character Set, Token &

Comments

Variable

Datatypes

Type Conversion / Type Casting

Operators

https://parajulirajesh.com.np/c-programming/

Resume

C Programming - parajulirajesh.com.np

Services Portfolio Contact Me

BICTE v

Programming concept with C

Assignments

Assignment 1

Assignment 2

ssignment 3

ssignment 4

>

>

Control structure

Selective Structure

Looping Structure

Nested Loop

Loop interrupts

Unit 4 Function

Function prototype, definition

and call

Different ways of using function

Call by value call by reference

Recursion Function

IC

=

=;

i_
—

C
c

=
)

i

IN
O

iC

=]

i

(e
e)

iC

IS

=a

iS

Concept of array

Array declare, access and

initialization

Multi-dimensional Array

Concept of Pointer

Pointer Address, deference,

declaration, assignment,

initialization

Pointer Arithmetic

Array_and Pointer

Difference between Malloc and

Calloc

String
String Function in C

Pointer and String

Computer Science Grade 10 Computer Science Grade 12

Study Materials

Unit 6 Structure and Union

Initializing, accessing member of

structure

Array of structure

Pointer of structure

Union

Difference between structure

and union

Unit 7 Concept of File handling

File Access Methods

Functions of file handling:

fopen(), fclose(),fflush(),

freopen()

Formatted input output

direct input output

Random File Access

Error handling

File operation

1/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

What is Program?

The program is the set of instructions that command the computer to perform a particular operation or a specific task.

e Instruction is a statement.

e Astatement is an instruction to do only one task.

e A group of statements is composed together to form a program.

Unit 1 Introduction of Programming Language.

A programming language is a computer language that is used by programmers (developers) to communicate with computers. It

is a set of instructions written in any specific language (C, C++, Java, Python) to perform a specific task.

e A programming language is a language that allows people to write specific commands to be executed on a computer.

e A programming language is mainly used to develop desktop applications, websites, and mobile applications.

e Most commonly used Programming Language are Python, JAVA, C, C++, C#, RUBY, PHP ... etc.

Types of Programming Language

1. Low-level Language

2. High Level Language

https://parajulirajesh.com.np/c-programming/ 2/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Types of programming

Language

High-level
Low-towel lunaguree onverts instructions written in assembly or h language into

3rd GL
procedural oriented

easyness, understandable (Gonganeger) of the

language er does not ung \anZUALT ts directly, so translator ig uegtt PastcahyBasins€obol

ecuable format ond GL Ath GL

Why use Translator?

Drodra mi lis\devckapac assembly or mn Assembly level

Tyaesheaneration use mnemonics form object oriented language

bits (O's and 1's) symbolic langugae eg: Java, c++, C#, PHP

Nonsag of compiler &interpreter 1 Acsembler is need to translate 5GL

'Maetine executable eg ADD, SUB, DIV Natural language

Asgembler: Assembler is a translator that c@nverts the code of the assembly language (Sourde CkicPROLOF chine

executible language machine language (Object Code). When assembler completed it converted process then only it started to

execute the program.

Compiler: A Compiler is a translator which translates the complete high level program (Source Code) into the machine code

(object code) at once if the program doesn't contain syntax errors. Programming languages like C, C++, Java use the compiler.

Interpreter: An interpreter is a language translator which translates high-level language into the machine language at line at a

time and executes the line of the program after it has been translated. It translates statements line by line.

Differences between Compiler and interpreter?

Compiler Interpreter

Interpreter Translates one line or single statement of a program into
Compiler translates the whole program into object code at a time. . .

object code at a time.

https://parajulirajesh.com.np/c-programming/ 3/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Translating process is faster Translating process is slower

It stores the converted machine code from your source code program . :
It never stores the machine code at all on the disk.

on the disk.

The compiler shows the complete errors and warning messages at An interpreter reads the program line-by-line; it shows the error if

program compilation time. So it is not possible to run the program present at that specific line. You must have to correct the error first

without fixing program errors. Doing debugging of the program is to interpret the next line of the program. Debugging is

comparatively complex while working with a compiler comparatively easy while working with an Interpreter.

Examples of compiler based programming language are C, C++, Java,
Examples of Interpreter based programming are BASIC, C#, PHP

COBOL, Pascal, FORTRAN

Syntax

In a programming language, Syntax defines the rules that govern the structure and arrangement of keywords, symbols, and other

elements. Syntax doesn’t have any relationship with the meaning of the statement; it is only associated with the grammar and

structure of the programming language.

A line of code is syntactically valid and correct if it follows all the rules of syntax.

Syntax does not have to do anything with the meaning of the statement.

Syntax errors are easy to catch.

Syntax errors are encountered after the program has been executed

Semantics

Semantics refers to the meaning of the associated line of code and how they are executed in a programming language.

semantics helps interpret what function the line of code/program is performing.

e If there is any semantic error and even when the statement has correct syntax, it wouldn't perform the function that was

intended for it to do. Thus, such errors are difficult to catch.

e Semantics are encountered at runtime.

Programming Design Tools

Program design Tools are the tools that are used to design a program before it actually developed. Program design tools are

used by the developers. Some program design tools are: Algorith, Flow Charts, Pseudo Code, Data flow Diagram(DFD), Usecase

Diagram... etc.

Algorithm: An algorithm is the sequence of steps that needs to be followed in order to acheive certain task. An algorithm is the

fininte set of step by step set of statements that is used to solve a particular problem.

https://parajulirajesh.com.np/c-programming/ 4/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

e It is written in simple human readable English Language.

An Algorithm should have the following properties:

1. It should have an input.

2. The steps mentioned in an algorithm can be executable by the computer

3. Each and every instruction should be in a simple language.

4. The number of steps should be finite.

5. It should not depend on a particular computer language or computer.

6. The algorithm should give an output after executing the finite numbers of steps.

Example of an algorithm:

1. Find the sum of two numbers.

step 1: START

Step2: Read the two numbers A and B.

Step3: Add the number A and B and store in S. or S=A+B.

Step4: Display D or Print D.

Steps: Stop.

2. Find the simple interest (SI).

Step1: Start.

Step2: Read the principal, rate, and time.

Step3: Multiply principal, rate and time.

Step4: Divide the product by 100 and store it in SI.

Step5: Print Sl

Step6: END

3. Write an algorithm to Print 1 to 20 and also make flowchart.

Step1: Start.

https://parajulirajesh.com.np/c-programming/ 5/84

9/7/25, 7:54 PM

Step2: Initialize X as 0,

Step3: Increment X by 1,

Step4: Print X,

Step5: If X is less then 20 then repeat from step 2 until X=20.

Step6: Stop.

Flowchart

A flowchart is a pictorial representation of an algorithm. Flowchart is a diagrammatic representation of sequence of logical steps of a program.

Flowcharts use simple geometric shapes to depict processes and arrows to show relationships and process/data flow.

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

Initialize X< O

YES

Increment X by 1

/ Print x /

6/84

9/7/25, 7:54 PM

Flowchart to find a given number is odd or even.

C Programming - parajulirajesh.com.np

Input Number

“Odd Numbet™
Display

Symbol Name Function

1 A vel renrese: 3 : Startiend An oval represents a start

J or end point

Aline is @ connector that
a shows relationships

—_—S Arrows
between the

representative shapes

i ,

F / F A parallelogram
i / Input/Output “ P eee en .

i represents input or output

rectangle repre Ss pepe A ectangle (enn sents a
process

i

< ea A diamond indicates a
Decision

decision

https://parajulirajesh.com.np/c-programming/

Symbol
Symbol

Name

Start/Stop

Process

Input/ Output

Decision

Arrow

On-page

Connector

Purpose

Used at the beginning and end of the

algorithm to show start and end of the

program.

Indicates processes like mathematical

operations.

Used for denoting program inputs and

outputs.

Stands for decision statements in a

program, where answer is usually Yes

or No.

Shows relationships between different

shapes.

Connects two or more parts ofa

flowchart, which are on the same page.

7184

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Off-page Connects two parts of a flowchart

Connector which are spread over different pages.

4. Determine Whether A Student Passed the Exam or Not:

Algorithm

e Step 1: Input grades of 4 courses M1, M2, M3 and M4,

e Step 2: Calculate the average grade with formula “Grade=(M1+M2+M3+M4)/4”

e Step 3: If the average grade is less than 60, print “FAIL”, else print “PASS”.

a =
fi

Input
_ ML M2. M3. M4"

a

| Grade = (Mi+M2+M3+M4)/4

}
— SE = —

<IfGrade < 60 >

i

Differences between Algorithm and Flowchart?

Algorithm

It is a procedure for solving problems.

https://parajulirajesh.com.np/c-programming/

Flowchart

It is a graphic representation of a process.

8/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

The process is shown in step-by-step instruction. The process is shown in block-by-block information diagram.

It is complex and difficult to understand. It is intuitive and easy to understand.

It is convenient to debug errors. It is hard to debug errors.

The solution is showcased in natural language. The solution is showcased in pictorial format

It is somewhat easier to solve complex problem. It is hard to solve complex problem.

It costs more time to create an algorithm. It costs less time to create a flowchart.

Features of Good Programme.

Correctness | Completeness Efficiency

Flexibility | Consistency { Maintainability J

1. Correctness: Program design should be correct as per requirement.

2. Completeness: The design should have all components like data structures, modules, and external interfaces, etc.

3. Efficiency: Resources should be used efficiently by the program.

4. Flexibility: Able to modify on changing needs.

5. Consistency: There should not be any inconsistency in the design.

6. Maintainability: The design should be so simple so that it can be easily maintainable by other designers.

Portability

A program should be supported by many different computers. The program should compile and run smoothly on different platforms. Because of

rapid development in hardware and software, platform change is a common phenomenon these days. So, portability is measured by how a

software application can be transferred from one computer environment to another without failure. A program is said to be more portable if it is

easily adopted on different computer systems. Subsequently, if a program is developed only for a particular platform, its life expectancy is

seriously compromised.

Maintainability

https://parajulirajesh.com.np/c-programming/ 9/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

It is the process of fixing program errors and improving the program. If a program is easy to read and understand, then its maintenance

will be easier. It should also prevent unwanted work so that the maintenance cost in the future will be low. It should also have quality to

easily meet new requirements. A maintainable software allows us to fix bugs quickly and easily, improve usability and performance, add

new features, make changes to support multiple platforms, and so on.

Efficient

Program is said to be more efficient if it takes the least amount of memory and processing time and is easily converted to machine language.

The algorithm should be more effective. Every program needs a certain amount of processing time and memory to process the instructions and

data. The program efficiency is also high if it has a high speed during runtime execution of the program.

Reliable

The user's actual needs will change from time-to-time, so the program is said to be reliable if it works smoothly in every version. It is measured

as reliable if it gives the same performance in all simple to complex conditions.

Machine Independent

Program should be machine-independent. Program written on one system should be able to execute on many different types of computers

without any changes. It is not system specific and provides more flexibility. An example of this would be Java.

Cost Effectiveness

Cost Effectiveness is the key to measure the program quality. The cost must be measured over the life of the program and must include both

costs and human costs of producing these programs.

Flexible

The program should be written in such a manner that it allows one to add new features without changing the existing module. The majority of

the projects are developed for a specific period, and they require modifications from time to time. It should always be ready to meet new

CHE Sa atIGA sors ready for a new world of possibilities.

e C programming is a general-purpose, procedural programming language developed in 1972 by Dennis M. Ritchie at the Bell

Telephone Laboratories to develop the UNIX operating system.

e The UNIX OS was totally written in C.

History of C

C programming language was developed in 1972 by Dennis Ritchie at bell laboratories of AT&T (American Telephone &

Telegraph), located in the U.S.A. Dennis Ritchie is known as the founder of the c language. C was developed to overcome the problems of

https://parajulirajesh.com.np/c-programming/ 10/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

previous languages such as B, BCPL, etc.

Initially, C language was developed to be used in UNIX operating system. It inherits many features of previous languages such as B and BCPL.

Language Year Developed By

Algol 1960 International Group

BCPL 1967 Martin Richard

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

Today C is the most widely used and popular System Programming Language. Today’s most popular Linux OS and RDBMS MySQL have been

written in C.

Structure of C Program

1 Structure of c

2 #include<stdio.h>/ le

3 ant main()//main_f

4
5 int a, b; fdeclare var

6 printf("enter numbers:"); //c to c to enter numbers

Z scanf("%d %d",&a,&b); //read rs by

8 printf("the value of entered numbers are:%d , %d", a,b); //display entered value to users

+) return @; //does not return null

19

C:\Users\Asus\Desktop\C pro * + |v

enter numbers:10 30
the value of entered numbers are:10 , 30

Process exited after 4.657 seconds with return value 0
Press any key to continue. . . |

1. Documentation (Documentation Section)

2. Preprocessor Statements (Link Section)

https://parajulirajesh.com.np/c-programming/ 11/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

3. Definition Section

4. Global Declarations Section

5. Main functions section

6. User-Defined Functions or Sub program functions

In C language, all these six sections together make up the Basic Structure of C Program

1. Documentation (Documentation Section)

Programmers write comments in the Documentation section to describe the program. The compiler ignores the comments and does not print

them on the screen. Comments are used only to describe that program.

/* File Name -: Hello.c

Author Name -: Rajesh parajuli Founder of parajulirajesh.com.np

Date -: 12/09/2023

Description -: Basic Structure of C program */

//This is a single line comment

2. Preprocessor Statements (Link Section)

Within the Link Section, we declare all the Header Files that are used in our program. From the link section, we instruct the compiler to link those

header files from the system libraries, which we have declared in the link section in our program.

#include <stdio.h>

#include <conio.h>

#include <string.h>

#include <math.h>

In addition to all these Header Files in the Link Section, there are a lot of Header Files which we can link in our program if needed.

3. Definition Section

The definition of Symbolic Constant is defined in this section, so this section is called Definition Section. Macros are used in this section.

#define PI 3.14

https://parajulirajesh.com.np/c-programming/ 12/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

4. Global Declarations Section

Within the Global Declarations Section, we declare such variables which we can use anywhere in our program, and that variable is called Global

Variables, we can use these variables in any function.

In the Global Declaration section, we also declare functions that we want to use anywhere in our program, and such functions are called Global

Function.

int area (int x); //global function

int n; // global Variable

5. Main functions section

Whenever we create a program in C language, there is one main() function in that program. The main () function starts with curly brackets and

also ends with curly brackets. In the main () function, we write our statements.

The code we write inside the main() function consists of two parts, one Declaration Part and the other Execution Part. In the Declaration Part, we

declare the variables that we have to use in the Execution Part, let’s understand this with an example.

int main (void)

{

int n = 15; // Declaration Part

printf ("n = %d", n); // Execution Part

return (@);

}

6. User-Defined Functions or Sub Program Section

Declare all User-Defined Functions under this section.

int sum (int x, int y)

{

return x + y;

What is the structure of C program syntax?

https://parajulirajesh.com.np/c-programming/ 13/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Any C Program can be divided into header, main() function, variable declaration, body, and return type of the program.

Basic Structure explaining with an example.

// Documentation
[**

* file: sum.c

* author: you

* description: program to find sum.

*/

// Link

#include <stdio.h>

// Definition

#define X 20

// Global Declaration

int sum(int y);

// Main() Function

int main(void)

{
int y = 55;

printf(“Sum: %d”, sum(y));
return 0;

}

// Subprogram

int sum(int y)

{
return y + X;

}

https://parajulirajesh.com.np/c-programming/

Sections

[**

* file: sum.c

* author: you

* description:

program to find sum.

*/

#include<stdio.h>

#define X 20

int sum(int y)

int main()

{...}

printf(“Sum: %d”,

sum(y));

return 0;

int sum(int y)

{

Description

It is the comment section and is part of

the description section of the code.

Header file which is used for standard

input-output. This is the preprocessor

section.

This is the definition section. It allows the

use of constant X in the code.

This is the Global declaration section

includes the function declaration that can

be used anywhere in the program.

main() is the first function that is executed

in the C program.

These curly braces mark the beginning

and end of the main function.

printf() function is used to print the sum

on the screen.

We have used int as the return type so we

have to return 0 which states that the

given program is free from the error and it

can be exited successfully.

This is the subprogram section. It includes

the user-defined functions that are called

in the main() function.

14/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Sections Description

return y + X;

Write a C program to implement subtraction by giving two numbers from user inputs. }

//C Program To Subtract Two Numbers

#include<stdio.h>

int main()

{
int num1, num2, difference;

//Asking for input

printf(“Enter first number: “);

scanf(“%d”", &num1);

printf(“Enter second number: “);

scanf(“%d", &num2);

difference = num1 - num2;

printf(“Difference of num1 and num2 is: %d” difference);

return 0;

}

Character Set

As every language contains a set of characters used to construct words, statements, etc., C language also has a set of characters which

include alphabets, digits, and special symbols. C language supports a total of 256 characters. Every character in C language has its equivalent

ASCII (American Standard Code for Information Interchange) value.

Every C program contains statements. These statements are constructed using words and these words are constructed using characters from C

character set. C language character set contains the following set of characters

1. Alphabets

2. Digits

3. Special Symbols

Alphabets:

C language supports all the alphabets from the English language. Lower and upper case letters together support 52 alphabets.

lower case letters — a to z

UPPER CASE LETTERS — A to Z

Digits: C language supports 10 digits which are used to construct numerical values in C language.

https://parajulirajesh.com.np/c-programming/ 15/84

9/7/25, 7:54 PM

Digits — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols:

C language supports a rich set of special symbols that include symbols to perform mathematical operations, to check conditions, white spaces,

backspaces, and other special symbols.

Special Symbols -~ @#$%*&*()_-+={}[]5:5"/?.>,<\]

C Programming - parajulirajesh.com.np

Symbols Name Symbols Name

= Tilde > Greater than

< Less than & Ampersand

| Or’pipe # Hash

> Greater than equal <= Less than equal

== Equal . = Assignment

t= | Not equal A Caret

{ Left brace } Right brace

(Left parenthesis) Right parenthesis

[Left square bracket] Right square bracket

/ Forward slash \ Backward slash

Colon : Semicolon

Plus : Minus

. Multiply / Division

% Mod , Comma

: Single quote “ Double quote

>> Right shift << Left shift

Period _ Underscore

Token in C

A token is a smallest individual element of a program which is meaningful to the compiler. The compiler that breaks a program into the smallest

units is called tokens and these tokens proceed to the different stages of the compilation.

¢ Tokens in C are building blocks which means a program can’t be created without tokens.

https://parajulirajesh.com.np/c-programming/ 16/84

9/7/25, 7:54 PM

1

Keywords

Classification of C Tokens

1.Keywords

“Identifiers

C Programming - parajulirajesh.com.np

3

Constants

Keywords are predefined, reserved words used in programming that have special meanings to the compiler. Keywords are part of the syntax and

they cannot be used as an identifier.

As Cis acase sensitive language, all keywords must be written in lowercase. Here is a list of all Keywords allowed in ANSI C.

auto double

break else

case enum

char extern

continue for

do if

2'Identifiers mre
const float

C predefined Keywords

int

long

register

return

signed

static

sizeof

short

struct

switch

typedef

union

void

while

volatile

unsigned

Identifiers in C are used for naming variables, functions, arrays, structures, etc. Identifiers in C are the user-defined words. It can be composed of

uppercase letters, lowercase letters, underscore, or digits, but the starting letter should be either an underscore or an alphabet. Identifiers cannot

be used as keywords. Rules for constructing identifiers in C are given below:

¢ An identifier can only have alphanumeric characters (a-z , A-Z , 0-9) (i.e. letters and digits) and underscore(_) symbol.

Identifier names must be unique.

e You cannot use a keyword as an identifier.

https://parajulirajesh.com.np/c-programming/

The first character must be an alphabet or underscore.

17/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

¢ Only the first thirty-one (31) characters are significant.

e [It must not contain white spaces.

¢ Identifiers are case-sensitive.

For Example:

int cprogram;

Char Bicte_firstsemester;

here, int and Char is keywords and cprogram and Bicte_firstsemester is identifier.

3.Constants

The constants in C are the read-only variables whose values cannot be modified once they are declared in the C program. The type of constant

can be an integer constant, a floating pointer constant, a string constant, or a character constant. In C language, the const keyword is used to

define the constants.

What is a constant in C?
As the name suggests, a constant in C is a variable that cannot be modified once it is declared in the program. We can not make any

change in the value of the constant variables after they are defined.

Syntax to Define Constant

const data_type var_name = value;

https://parajulirajesh.com.np/c-programming/ 18/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Constants

T Const int var

tod
Keyword Datatype Name of Initial

Student Value

Types of Constants in C

C Constants

!
| constant Cha “er

Integer t . Real constant Character constant String constant

// C program to illustrate constant variable definition // C Program to demonstrate the behaviour of constant

#include <stdio.h> // variable

#include <stdio.h>

int main()

{ int main()

{
// defining integer constant using const keyword // declaring a constant variable

const int int_const = 25; const int var;

// initializing constant variable var after declaration

https://parajulirajesh.com.np/c-programming/ 19/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

// defining character constant using const keyword var = 20;

const char char_const = ‘A’;

printf(“Value of var: %d”, var);

// defining float constant using const keyword return 0;

const float float_const = 15.66; }

printf(“Printing value of Integer Constant: %d\n’,

int_const);

printf(“Printing value of Character Constant: %c\n",

char_const);

printf(“Printing value of Float Constant: %f”,

float_const);

return 0;

}

4.Strings

¢ Sequence of Characters is known as Strings.

e Every String is terminated by \0

¢ String Constant is a sequenced os 0 or more characters enclosed between double quotes ”” is known as string constant e.g. “S”, “XYZ”,

“123”, “hello world”

¢ All characters are converted into their corresponding ASCII value and then stored in memory as contiguous allocation.

¢ String Variable is the array of character type. For e.g. char[10];

char greeting[6] = {H’, ‘e’, 'I', I’, ‘o', '\O'};

If you follow the rule of array initialization then you can write the above statement as follows —

char greeting[] = "Hello’;

#include <stdio.h>

#include <stdio.h> int main()

{
int main () { char name[6];

printf(“Enter name: “);

char greeting[6] = {'H', 'e', '1', '1', 'o', '\ scanf(“%s”, name);

https://parajulirajesh.com.np/c-programming/ 20/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

printf ("Greeting message: %s\n", greeting); printf(“Your name is %s.”, name);

return 0; return 0;

} }

Like many other programming languages, strings in C are enclosed within double quotes(” “), whereas characters are enclosed within single

quotes(‘ ‘). When the compiler finds a sequence of characters enclosed within the double quotation marks, it adds a null character (\0) at the end

by default.

eid; >

1. Character arrays are used for declaring strings in C.

2. The general syntax for declaring them is:

char variable[array_size];

5.Special Symbols

Special Symbols are symbols in C language that have special meaning and can not be used for any other purpose.

¢ Brackets[]: Opening and closing brackets are used as array element references. These indicate single and multidimensional subscripts.

¢ Parentheses(): These special symbols are used to indicate function calls and function parameters.

¢ Braces{}: These opening and ending curly braces mark the start and end of a block of code containing more than one executable

statement.

¢ Comma (,): It is used to separate more than one statement like for separating parameters in function calls.

¢ Colon(:): It is an operator that essentially invokes something called an initialization list.

¢ Semicolon(;): It is known as a statement terminator. It indicates the end of one logical entity. That’s why each individual statement must

be ended with a semicolon.

¢ Asterisk (*): It is used to create a pointer variable and for the multiplication of variables.

¢ Assignment operator(=): It is used to assign values and for logical operation validation.

¢ Pre-processor (#): The preprocessor is a macro processor that is used automatically by the compiler to transform your program before

actual compilation.

¢ Period (.): Used to access members of a structure or union.

¢ Tilde(~): Used as a destructor to free some space from memory.

Square Brackets [|

The opening and closing square brackets represent single and multi-dimensional subscripts and they are used as array element reference for

accessing array elements.

int arr[10]; //For declaring array, with size defined in square brackets

Simple Brackets ()

The opening and closing circular brackets are used for function calling and function declaration.

https://parajulirajesh.com.np/c-programming/ 21/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

get_area(100); //Function calling with 100 as parameter passed in circular brackets

Curly Braces { }

In C language, the curly braces are used to mark the start and end of a block of code containing executable logical statements.

int main{

printf(“Illustrating the use of curly braces!”);

}
Comma (,)

Commas are used to separate variables or more than one statement just like separating function parameters in a function call.

int a=10,b=20,c=30; //Use of comma operator

Pre-Processor / Hash (#)

It is a macro-processor that is automatically used by the compiler and denotes that we are using a header file.

#include<stdio.h> //For defining header-file

#define Il long

int main(){

printf(“Hello World!”);

}

Asterisk (*)

Asterisk symbols can be used for multiplication of variables and also for creating pointer variables. Example:

int main({

int a = 20,b = 10;

int sum = a*b; //Use of asterisk in multiplication

int *ptr = &a;

//Pointer variable ptr pointing to address of integer variable a

}

Tilde (~)

It is used as a destructor to free some space from the memory.

int main({

int n = 2;

printf(“Bitwise complement of %d: %d”, n, ~n);

//Bitwise complement of 2 can be found with the help of tilde operator and the result here is -3

}

Period (.)

It is used to access members of a structure or a union.

#include <stdio.h>

#include <string.h>

https://parajulirajesh.com.np/c-programming/ 22/84

9/7/25, 7:54 PM

struct Person { //structure defined

int city_no; //members of structure

float salary;

}person1;

int main(){

person1.city_no = 100;

//accessing members of structure using period (.) operator

person1.salary = 200000;

printf(“City_Number: %d”,person1 .city_no);

printf(“\nSalary: %.2f",person1.salary);

return 0;

}

Colon (:)

It is used as a part of conditional operator (?:) in C language.

Example:

int a = 10,b = 20,c;

c=(a<b)?a:b;

//\f a<b is true, then c will be assigned with the value of a else b

printf(“%d”, c);

Semicolon (;)

It is known as a statement terminator and thus, each logical statement of C language must be ended with a semi-colon.

Example:

C Programming - parajulirajesh.com.np

int a=10; //Semi-colon is widely used in C programs to terminate a line

Assignment Operator (=)

It is used to assign values to a variable and is sometimes used for logical operation validation.

Example:

int a = 10, b = 20; //Assignment operator is used to assign some values to the variables

6.operators

Operators are symbols that are used to perform some operation or a set of operations on a variable or a set of variables. C has a set of operators

to perform specific mathematical and logical computations on operands. C Supports a rich set of built-in Operators. Operators are used to

fOnrthe:Basis'efnumpber of operands required for an operator
https://parajulirajesh.com.np/c-programming/ 23/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Example: Y= a+b

Unary Operator: The operator which require only one operand are known as unary Operator. Examples: ++ (increment operator), — (decrement

opealoy) aktdptrator

e a,b are operand

Binary Operators: The operators which require two operands are known as binary operators. For example: A+B, A-B, A*B, A/B etc.

Types of Operator:
Ternary Operators: The operators that require three operands are known as ternary operators. For Example: A ? B : C (this is also a condiotional
operafork e basis of the number of operands required for an operator

2. On'the basis of utility or functions of an operator

2. On the Basis of Utility (or functions) of an operator

According to the utility and action, operators are classified into following categories:

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Increment and Decrement Operators

6. Conditional Operators

7. Bitwise Operators

8. Special Operators

Arithmetic Operators

Arithmetic Operators are the type of operators in C that are used to perform mathematical operations in a C program. They can be used in

programs to define expressions and mathematical formulas.

Operator Arithmetic Operation
Name of the Operator Syntax

+ Addition X+
Add two operands. 7

- Subtraction x-y
Subtract the second operand from the first operand.

* Multiplication ; x*y
Multiply two operands.

/ Division _ x/y
Divide the first operand by the second operand.

https://parajulirajesh.com.np/c-programming/ 24/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Operator Arithmetic Operation
Name of the Operator Syntax

/hf program tydamasastratecHithmetic operators a x%Y
#include <stdio.h> Calculate the remainder when the first operand is divided by the second operand.

int main()

{
int a = 10, b = 4, res;

// printing a and b

printf(“a is %d and b is %d\n”, a, b);

res = a+b; // addition

printf(“a + b is %d\n’, res);

res = a— b; // subtraction

printf(“a — b is %d\n”, res);

res = a* b; // multiplication

printf(“a * b is %d\n”, res);

res = a/b; // division

printf(“a / b is %d\n’, res);

res = a % b; // modulus

printf(“a %% b is %d\n’, res);

return 0;

}

Relaional/ Comparison Operators

A relational operator checks the relationship between two operands. If the relation is true, it returns 1; if the relation is false, it returns value 0.

Operator Name Example Result

=s Equal to X==y Returns 1 if the values are equal

I= Not equal x lay Returns 1 if the values are not equal

https://parajulirajesh.com.np/c-programming/ 25/84

9/7/25, 7:54 PM

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

x>y

X>=y

C Programming - parajulirajesh.com.np

Returns 1 if the first value is greater than the second value

Returns 1 if the first value is less than the second value

Returns 1 if the first value is greater than, or equal to, the second value

Returns 1 if the first value is less than, or equal to, the second value

// C program to demonstrate working of relational operators

#include <stdio.h>

int main()

{
inta=10,b =4;

// greater than example

if (a > b)

printf(“a is greater than b\n’);

else

printf(“a is less than or equal to b\n’);

// greater than equal to

if (a >= b)

printf(“a is greater than or equal to b\n’);

else

printf(“a is lesser than b\n’);

// less than example

if (a<b)

printf(“a is less than b\n’);

else

printf(“a is greater than or equal to b\n’);

// lesser than equal to

if (a <= b)

printf(“a is lesser than or equal to b\n’);

https://parajulirajesh.com.np/c-programming/ 26/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

else

printf(“a is greater than b\n’);

// equal to

if (a == b)

printf(“a is equal to b\n’);

else

printf(“a and b are not equal\n’);

// not equal to

if (a !=b)

printf(“a is not equal to b\n’);

else

printf(“a is equal b\n’);

return 0;

}

Logical operators

Logical Operators are used to compare or evaluate logical and relational expressions. The operands of logical operators must be either Boolean

value (1 or 0) or expressions that produces Boolean value. The Output of these operators is always either 1 true or 0 False. The logical Operators

supported in C are:

¢ && logical AND : it produces true if each operand is true otherwise it produces false.

¢ || Logical OR : it produces true when any of the conditions is true.

e ! Logical NOT- it reverse to the operand.

Write a program to illustrate the output of logical operators.

#include<stdio.h>

#include<conio.h>

int main()

{
int a=10, b=5, c=40;

printf(“a<b && a<c is %d\n”, (a<b && a<c));

printf(“a>b && b>c is %d\n”, (a>b && b<c));

printf(“a<b || asc is %d\n”, (asb || a<c));

printf(“a>b || b<c is %d\n”, (a>b || b<c));

printf(“a>c || b>c is %d\n”, (a>c || b>c));

Printf(“not operator “, a!b);

https://parajulirajesh.com.np/c-programming/ 27/84

9/7/25, 7:54 PM

getch();

return 0;

}

Assignment operators

Assignment Operators are also binary operators and they are used to assign result of an expression to a variable. The mostly used assignment

operator is ‘=’. There are other shorthand assignment operators supported by C. They are +=,

as arithmetic assignment operators.

+= Addition Assignment (a+=b, means a=a+b) assign sum of a and b to a.

-= Subtraction Assignment (a-=b, means a=a-b) assign subtraction of a and b to a)

= Multiplication Assignment (a=b, means a=a*b) assign multiplication of a and b to a)

/= Division Assignment (a/=b, means a=a/b) assign division of a and b to a)

%= Remainder Assignment (a%=b, means a=a%b) assign remainder of a divisible by b to a)

Demostrate the assignment operator in c program

#include<stdio.h>

#include<conio.h>

int main()

{

int a=10, b=5;

bt+=a; //b=bta

printf(“b=%d”, b);

getch();

return 0;

}
Output:

b=15

Increment and decrement operators

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

, *=,/+ and %=. These Operators are also known

28/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

The increment operator is used to increase the value of an operand by 1; and the decrement operator is used to decrease the value of an

operand by 1. They take one operand, so called unary operator. The syntax for the operator is:

e ++ variable

¢ variable++

e -variable

¢ variable++

#include <stdio.h>

int main() {

int x = 10;

printf(“Initial value of x: %d\n”, x);

x++; // Increment

printf(“After increment (x++): %d\n”, x);

x-; // Decrement

printf(“After decrement (x—): %d\n”, x);

return 0;

}

Conditional Operators

The Operator named “?:” is known as conditional Operator. It takes three operands. Thus, it is also called ternary operator. The syntax is :

value= expression ? expression2: expression3

working principal

 If(expression 1)

¢ variable = expression2;

e else

¢ variable = expression3;

Write a program to read two numbers from user and determine the larger number using conditional operator.

#include<stdio.h>

#include<conio.h>

int main()

{
int n1, n2, larger;

printf(“Enter two numbers:”);

scanf(“%d%d", &n1, &n2);

larger = n1>n2 ?.n1:n2;

Printf(“The larger number is %d”, larger);

https://parajulirajesh.com.np/c-programming/ 29/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

getch();

return 0;

}
Output:

Enter two numbers: 35 90

The larger number is 90

Bitwise Operator

The bitwise operators are the operators used to perform the operations on the data at the bit-level. When we perform the bitwise

operations, then it is also known as bit-level programming. It consists of two digits, either 0 or 1. It is mainly used in numerical

computations to make the calculations faster. It can be used only integer type values not float, double etc.

We have different types of bitwise operators in the C programming language. The following is the list of the bitwise operators:

Operator Meaning of operator

& Bitwise AND operator

| Bitwise OR operator

“ Bitwise exclusive OR operator

~ One's complement operator (unary operator)

<< Left shift operator

Right shift operator
>>

Let's look at the truth table of the bitwise operators.

xX Y X&Y XlY X*Y

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Bitwise exclusive operator gives 0 if both corresponding values are same. if both corresponding vales are not same, it gives 1.

https://parajulirajesh.com.np/c-programming/ 30/84

9/7/25, 7:54 PM

Write a program to demostrate bitwise operator.

#include<stdio.h>

int main()

{

int a=7,b=14;

printf(“Bitwise AND %d\n”, a&b);

printf(“Bitwise OR %d\n”, alb);

printf(“Bitwise XOR %d\n”, a*b);

return 0;

}

Output:

Bitwise AND 6

Bitwise OR 15

Bitwise XOR 9

Left Shift Operator

The left shift operator is a type of Bitwise shift operator, which performs operations on the binary bits. It is a binary operator that requires two

operands to shift or move the position of the bits to the left side and add zeroes to the empty space created at the right side after shifting the

bits.

C Programming - parajulirajesh.com.np

Bitwise Left shift operator is used to shift the binary sequence to the left side by specified position.

Example

Let’s take a number 14.

Binary representation of 14 is 00001110 (for the sake of clarity let’s write it using 8 bit)

14 = (00001110)

Then 14 << 1 will shift the binary sequence 1 position to the left side.

Like,

https://parajulirajesh.com.np/c-programming/ 31/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

=) Ueinbededeleibe
a |
aes
1

e #include <stdio.h>
AROMA ESHA Pe shifted one more time

{ Empty boxes will be marked as 0
e

¢ // declare local variable

e intnum;

¢ printf (” Enter a positive number: “);

* scanf (” %d”, &num);

¢ // use left shift operator to shift the bits

* num = (num << 2); // It shifts two bits at the left side

e printf (” \n After shifting the binary bits to the left side. “);

¢ printf (” \n The new value of the variable num = %d”, num);

¢ return 0;

-}

Enter a positive number: 14

After shifting the binary bits to the left side.

The new value of the variable num = 56

In general, if we shift a number by n position to left, the output will be number * (2").

Right Shift Operator

https://parajulirajesh.com.np/c-programming/ 32/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

The right shift operator is a type of bitwise shift operator used to move the bits at the right side, and it is represented as the double (>>) arrow

symbol. Like the Left shift operator, the Right shift operator also requires two operands to shift the bits at the right side and then insert the

zeroes at the empty space created at the left side after shifting the bits.

Bitwise Right shift operator >> is used to shift the binary sequence to right side by specified position.

Example

Let's take a number 14.

Binary representation of 14 is 00001110 (for the sake of clarity let’s write it using 8 bit)

14 = (00001110) 9

Then 14 >> 1 will shift the binary sequence by 1 position to the right side.

Ga uu BB

Bet SEU EB EE He
above result will be shifted one more time (a

Empty boxes will be marked as 0

In general, if we shift a number by n times to right, the output will be number / (2") .

1. #include <stdio.h>

2. int main ()

3. {

4. // declare local variable

5. int num;

6. printf (” Enter a positive number: “);

7. scanf (” %d”, &num);

https://parajulirajesh.com.np/c-programming/ 33/84

9/7/25, 7:54 PM

8. // use right shift operator to shift the bits

9. num = (num >> 2); // It shifts two bits at the right side

10. printf (” \n After shifting the binary bits to the right side. “);

11. printf (” \n The new value of the variable num = %d”, num);

12. return 0;

13.}

Output:

Enter a positive number:

After shifting the binary bits to the right side.

The new value of the variable num = 3

Datatypes

Datatypes refers to the types of data.

Category Data Type

Primitive char

signed char

unsigned char

int

unsigned int

https://parajulirajesh.com.np/c-programming/

Format Specifier

%C

%C

%C

Md, %i

%u

Size (Bytes)

2or4

2or4

C Programming - parajulirajesh.com.np

Range

-128 to 127 (signed) / 0 to 255

(unsigned)

-128 to 127

0 to 255

-32,768 to 32,767 (2-byte) /

-2,147,483,648 to
2,147,483,647 (4-byte)

0 to 65,535 (2-byte) / 0 to
4,294,967,295 (4-byte)

Description

Stores a single

character.

Stores a signed

character.

Stores an unsigned

character.

Stores integers

(whole numbers).

Stores non-

negative integers.

34/84

9/7/25, 7:54 PM

https://parajulirajesh.com.np/c-programming/

short int

unsigned short int

long int

unsigned long int

long long int

unsigned long long

int

float

double

long double

%hd

%hu

%ld

%lu

%lld

%llu

eof

mali

Lf

C Programming - parajulirajesh.com.np

2 -32,768 to 32,767

2 0 to 65,535

-2,147,483,648 to

2,147,483,647 (4-byte) /

4ors -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807 (8-

byte)

0 to 4,294,967,295 (4-byte) / 0

4ors to 18,446,744,073,709,551,615

(8-byte)

3 -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

8 Oto

18,446,744,073,709,551,615

4 3.4E-38 to 3.4E+38

8 1.7E-308 to 1.7E+308

10, 12, or 16 3.4E-4932 to 1.1E+4932

Stores small

integer values.

Stores small

unsigned integers.

Stores long

integers.

Stores long

unsigned integers.

Stores very large

integers.

Stores very large

unsigned integers.

Stores single

precision floating-

point numbers.

Stores double

precision floating-

point numbers.

Stores extended

precision floating-

point numbers.

35/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Represents no

void N/A 0 N/A value or an

unknown type.

A collection of
. Depends on the type and

Derived Array N/A Depends elements of the
number of elements

same type.

Stores the memory
Depends on the system

Pointer %p 4or8s ; address of another
architecture .

variable.

A collection of

Depends on the structure variables of
User-Defined struct N/A Depends .

members different data types

under one name.

Shares memory

among its
, Depends on the largest g :

union N/A Depends members, with only
member :

one member being

used at a time.

. Represents a set of
Based on the integer values ;

. enum %d 4 iqned t tant named integer
assigned to constants Variable 9 constants.

Variable is a container that holds the value of any kind of data type. It is a case sensitive in c program. It is an identifier which store the value and

reserved some memory space for data of any type.

Syntax:

data_type variable_name=value;

Rules for defining variable

e A variable can have alphabets, digits, and underscore.

e Avariable name can start with the alphabet, and underscore only. It can’t start with a digit.

e No whitespace is allowed within the variable name.

https://parajulirajesh.com.np/c-programming/ 36/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

e A variable name must not be any reserved word or keyword, e.g. int, float, etc.

Example

#include <stdio.h>

int main() {

int x = 5;// x is a variable of integer type

char y[12] = “helloworld”;// y is a variable of string type

char z=’b’; // z is a variable of character type

float a=12.5; // ais a variable of float type

double b=19.99; // b is a variable of double type

printf(“%d\n%s\n%c\n%f\n%lf\n’, x,y,z,a,b);

return 0;

}
Output:

5

helloworld

b

12.500000

19.990000

Datatypes List

Data Type Size

byte 1 byte

short 2 bytes

int 4 bytes

long 8 bytes

float 4 bytes

double 8 bytes

boolean 1 bit

char 2 bytes

https://parajulirajesh.com.np/c-programming/

Description

Stores whole numbers from -128 to 127

Stores whole numbers from -32,768 to 32,767

Stores whole numbers from -2,147,483,648 to 2,147,483,647

Stores whole numbers from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits

Stores fractional numbers. Sufficient for storing 15 decimal digits

Stores true or false values

Stores a single character/letter or ASCII values

37/84

9/7/25, 7:54 PM

Type conversion is the way of converting a datatype of one variable to another datatype.

Types of type conversion:

1. Implicit type conversion- conversion is done by the compiler and there is no loss of information. It is automatic type conversion.

2. Explicit type conversion- conversion is done by the programmer and there will be loss of information.

Implicit Type Conversion

// An example of implicit conversion

#include <stdio.h>

int main()

{
int x = 10; // integer x

char y = ‘a’; // character c

//y implicitly converted to int. ASCII

// value of ‘a’ is 97

X=Xty;

// xis implicitly converted to float

float z = x + 1.0;

printf(“x = %d, z = %f”, x, z);

return 0;

}

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

Type Casting / Type Conversion

38/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Explicit Type Conversion

Lower Data Explicit Type Higher Data

type Conversion type

This process is also called type casting and it is user-defined. Here the user can typecast the result to make it of a particular data

type

Syntax:

(type) expression

Example:

float f = 10.5;

int num = (int)f; // Explicit typecasting (float to int)

Control Statements in ¢
// C program to demonstrate explicit type casting

EAtesstdia dais control the flow of execution of the statements of a program. The various types of Control statements are :

int main()

{

https://parajulirajesh.com.np/c-programming/ 39/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Control Statements

Selective /Decision Iteration/Looping Jumping
Making / Conditional Seararents

Statements Statements

Conditional For Loo p b reak

While Loop continue

Do while Loop + go to

return

operator

if

if else

if else laddar

nested if else
1. Conditional Statements / Selective / Desision Structure

In conditional control , the execution of statements depends upon the condition-test. If the condition evaluates to true, then a set of statements

is executed otherwise another set of statements is followed. This control is also called Decision Control or selective control statement because

it helps in making decision about which set of statements is to be executed.

If statement: This is the most simple form of decision control statement. In this form, a set of statements are executed only if the condition

given with if evaluates to true.

Syntax:

if(condition)

{
//if block of Statements executed if the given if condition is true ;

}

https://parajulirajesh.com.np/c-programming/ 40/84

9/7/25, 7:54 PM

If else Statement: This is a bi-directional control statement. This statement is used to test a condition and take one of the two possible actions.

If the condition evaluates to true then one statement (or block of statements) is executed otherwise other statement (or block of statements) is

executed.

Syntax:

if(expression)

{
//code to be executed if condition is true

}
else

{
//code to be executed if condition is false

}
//executed outer statements;

If else ladder statements(if-else-if):

The if-else-if ladder statement is an extension to the if-else statement. It is used in the scenario where there are multiple cases to be performed

for different conditions. In if-else-if ladder statement, if a condition is true then the statements defined in the if block will be executed, otherwise

if some other condition is true then the statements defined in the else-if block will be executed, at the last if none of the condition is true then the

statements defined in the else block will be executed. There are multiple else-if blocks possib

Syntax:

if(condition1)

{
//code to be executed if condition is true

}
else if(condition2)

{
//code to be executed if condition2 is true

}
else if(condition3)

{
//code to be executed if condition3 is true

}

else

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

41/84

9/7/25, 7:54 PM

{

C Programming - parajulirajesh.com.np

//code to be executed if all the conditions are false

}
//executed outer statements if it is there;

Nested if else: Nested if else statement is a control statement where both if else statement is there with having another if else statement inside

it.

Syntax of nested if else:

if (condition1){

if (condition2)

stmt;

else

stmt2;

}
else {

if (condition3)

stmt3;

else

stmt4;

}

Q. Find greatest number among three

numbers using if statement.

#include <stdio.h>

int main() {

int n1, n2, n3;

printf(“Enter three different numbers: “);

scanf(“%d %d %d”, &n1, &n2, &n3);

// if n1 is greater than both n2 and n3, n1 is

the largest

if (n1 >= n2 &&n1 >= n3)

printf(“%d is the largest number.”, n1);

https://parajulirajesh.com.np/c-programming/

Q. Find greatest number among three

numbers using if else laddar statement.

#include <stdio.h>

int main() {

int n1, n2, n3;

printf(“Enter three numbers: “);

scanf(“%d %d %d”, &n1, &n2, &n3);

// if n1 is greater than both n2 and n3, n1 is

the largest

if (n1 >= n2 &&n1 >= n3)

printf(“%d is the largest number.”, n1);

Q.Find the greatest number among three

numbers using nested if else statement.

#include <stdio.h>

int main() {

int n1, n2, n3;

printf(“Enter three numbers: “);

scanf(“%d %d %d”, &n1, &n2, &n3);

// outer if statement

if (n1 >= n2) {

// inner if...else

if (n1 >= n3)

42/84

9/7/25, 7:54 PM

// if n2 is greater than both n1 and n3, n2 is

the largest

if (n2 >=1n1 &&n2 >= n3)

printf(“%d is the largest number.”, n2);

// if n3 is greater than both n1 and n2, n3 is

the largest

if (N3 >= 1n1 && n3 >= n2)

printf(“%d is the largest number.”, n3);

return 0;

}

C Programming - parajulirajesh.com.np

// if n2 is greater than both n1 and n3, n2 is

the largest

else if (n2 >=1n1 && n2 >= n3)

printf(“%d is the largest number.”, n2);

// if both above conditions are false, n3 is the

largest

else

printf(“%d is the largest number.”, n3);

return 0;

}

printf(“%d is the largest number.”, n1);

else

printf(“%d is the largest number.”, n3);

}

// outer else statement

else {

// inner if...else

if (n2 >= n3)

printf(“%d is the largest number.”, n2);

else

printf(“%d is the largest number.”, n3);

}

return 0;

}

Switch case: A switch statement allows a variable to be tested for equality against a list of values. Each value is called a case, and the variable

being switched on is checked for each switch case. The switch statement allows us to execute one code block among many alternatives.

Syntax:

switch (expression)

{
case constant1:

// statements

break;

case constant2:

// statements

break;//optional

default:

https://parajulirajesh.com.np/c-programming/

Q. C program to calculate the weekday name by entering numbers

#include <stdio.h>

int main() {

int day = 4;

switch (day) {

case 1:

printf(“Monday”);

break;

case 2:

printf(“Tuesday”);

break;

case 3:

printf(“Wednesday’”);

43/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

// default statements break;

} case 4:

printf(“Thursday”);

break;

case 5:

printf(“Friday”);

break;

case 6:

printf(“Saturday”);

break;

case 7:

printf(“Sunday”);

break;

}

return 0;

}

Conditional operator statement: It is a ternary operator and is used to perform simple conditional operations. It is used to do operations similar

to if-else statement.

The general syntax of conditional operator is as under:-

Test expression? expression1:expression2

https://parajulirajesh.com.np/c-programming/ 44/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

True

(condition) ? expression1 : expression2

False

Example

Write a c program to demonstrate the conditional operator statement?

#include <stdio.h>

int main() {

int num;

scanf(“%d”", &num);

(num % 2 == 0)? printf(“The given number is even’) : printf(“The given number is odd”);

return 0;

}

https://parajulirajesh.com.np/c-programming/ 45/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

2. Iteration #.egeing statements: | Ternary Operator
1

Loop may be defined agiglaek of statements which are repeatedly executed for a ¢ataind@~mberefitimes-or until a particular condition is

satisfied. Iterations or loops are used when we want to execute a statement or block of statements several times. The repetition of loops is

controlled with the help,of a testicopdition. The statements in the loop keep on executing iepstitively until the test condition becomes false.

int number = 3; 1 int number = 3;
There are three types of loop inC:

if (number % 2 == 0) ¢ (number % 2 == 0) ?

i
1

Uwe loop printf("Even Number"); ! printf("Even Number")
2. Do-while loop }] printf("Odd Number");

3. For loop else { i

printf("Odd Number"); return 0:
} ,

|
While loop: The while loop/eops-exe@uite a block of code as long as a specified condition is true. It is also known as entry controlled loop that

means the test conditiop is checked before entering the main body of the loop.

Syntax:

ee Ternary operator vs if...else
initialization_expression;

while (test_expression)
Questions for students:

// body of the while loop
1., Write a c program to find greatest number among two numbers using conditional operator statement.

upddte_expression;
2. Write a c program to print candidate can vote if candidate age is greater or equal to 18 and print candidate cannot vote if not greater than

equal to age of 18.

Example:

#include <stdio.h>

int main () {

/* local variable definition */

int a = 10;

/* while loop execution */

while(a < 20) {

printf(“value of a: %d\n”, a);

att;

}

https://parajulirajesh.com.np/c-programming/ 46/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

return 0;

}

Do-while loop: The do-while loop is similar to a while loop but the only difference lies in the do-while loop test condition which is tested at the

end of the body. In the do-while loop, the loop body will execute at least once irrespective of the test condition. In case of do-while, firstly the

statements inside the loop body are executed and then the condition is evaluated. As a result of which this loop is executed at least once even if

the condition is initially false. After that the loop is repeated until the condition evaluates to false. Since in this loop the condition is tested after

the execution of the loop, it is also known as posttest loop. It is also called exit controlled loop means the means the test condition is evaluated

at the end of the loop body.

Syntax:

initialization_expression;

do

{
// body of do-while loop

update_expression;

} while (test_expression);

Example of Do while loop:

#include <stdio.h>

int main() {

int i = 0;

do {

printf(“%d\n",i);

i++;

}while(i<=5);

return 0;

}

https://parajulirajesh.com.np/c-programming/ 47/184

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Difference between while and do-while loop

While do-while

While loop is pre test loop. do-while is post test loop

The statements of while loop may not be | The statements of do-while loop are executed
executed even once atleast once

For loop: Thd RPIGop alfows BAexecBR Block SPLABte mM a rBHBer of HAA |W RETALERAR GRR ata WAUAICMNAHIAE, theluse of
for loop wi hus this loop is also known as a determinate or definite lagn For loan consists of three expressions with

; | The syntax of while loop is The syntax of do-while loop is as under:-
semicolons. : me

While(condition) Do

{ {
Statements Statements;

for(initializatjon; test_condition; increment or decrement) { Statements or iiatiilsiteca ition):

Example: Write a program to write a table of n number given by user. C program to generate Fibonaci series (most important, will apear in

#include<stdio.h> exam question)

int main({ #include <stdio.h>

int i=1,number; int main() {

printf(“Enter a number: “);

scanf(“%d", &number); int i, n;

for(i=1;i<=10;i++){

printf(“%d \n”, (number*i)); // initialize first and second terms

} inttl =0,t2=1;

return 0;

} // initialize the next term (3rd term)

int nextTerm = t1 + t2;

/* C program to calculate a Factorial of a given number */ // get no. of terms from user

#include <stdio.h> printf(“Enter the number of terms: “);

scanf(“%d”", &n);

int main()

{ // print the first two terms t1 and t2

int num,i; printf(“Fibonacci Series: %d, %d, “, t1, t2);
long fact=1;

printf(“Enter number”); // print 3rd to nth terms
scanf(“%d”,&num); for (i = 3; i <= n; ++i) {

for(i=1;is=num;i++) printf(“%d, “, nextTerm);
fact=fact*i; tl =t2;

printf(“%ld”, fact); t2 = nextTerm;

nextTerm = t1 + t2;

return 0; }

}

https://parajulirajesh.com.np/c-programming/ 48/84

9/7/25, 7:54 PM

Nested Loop

Nested loop: Using a loop inside another loop is called nested loop. C support n times of nested loop. The nested for loop means any type of

loop which is defined inside the ‘for’ loop.

Syntax of Nested loop

Outer_loop

{
Inner_loop

{
// inner loop statements.

}
// outer loop statements.

}

Example of nested loop to print pattern:

wk

KKK

KKK

KKK

#include <stdio.h>

int main() {

inti, j, n;

// Ask the user for the number of rows

printf(“Enter the number of rows: “);

scanf(“%d", &n);

// Outer loop for rows

for (i = 1; i <= n; i++) {

// \nner loop for columns (stars in each row)

for j = 1;j <= i; j++) {

printf(“*”);

}
// Move to the next line after each row

printf(“\n’);

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

return 0;

}

49/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

}
return 0;

}

2. Example of nested for loop

#include <stdio.h>

int main()

{
int n;// variable declaration

printf(“Enter the value of n:”);

scanf(“%d",&n);

// Displaying the n tables.

for(int i=1;i<=n;i++) // outer loop

{

for(int j=1;j<=10;j++) // inner loop

{
printf(“%d\t",(i*j)); // printing the value.

}

printf(“\n’);

}
Explanation of the above code

¢ First, the ‘i’ variable is initialized to 1 and then program control passes to the

i<=n.

e The program control checks whether the condition ‘i<=n’ is true or not.

e If the condition is true, then the program control passes to the inner loop.

¢ The inner loop will get executed until the condition is true.

e After the execution of the inner loop, the control moves back to the update of

the outer loop, i.e., i++.

e After incrementing the value of the loop counter, the condition is checked again,

i.e., is=n.

e If the condition is true, then the inner loop will be executed again.

¢ This process will continue until the condition of the outer loop is true.

https://parajulirajesh.com.np/c-programming/ 50/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Vv + input

: 3

..-Program finished with exit code 0

Press ENTER to exit console.fj

3. Jump Statements / Loop Interrupts

In C, you can control the flow of loops using loop interrupts such as break, continue, and return. These keywords allow you to alter the normal

flow of control within loops and functions.

Jump statements in C are used to alter the normal sequence of execution of a program. They allow the program to transfer control to a different

part of the code.

Simple definition: Jump statements are used to transfer the control from one part of the program to another part.

Types of Jump Statements in C
Fhebreak Statement t rminates the execution of the loop and the control transferred to the statement immediately following the loop.

é are four typés of Jump statements:

Break statement is used inside the loops or switch statement. This statement causes an immediate exit from the loop or the switch case block

in ich it appears. If the test condition is to be terminated instantly without testing termination condition, the break statement is useful.

3. goto
It eqn be written as

. return
break;

https://parajulirajesh.com.np/c-programming/ 51/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Initialization

Test

Condition

?

Body of Loop

Condition

for break?

Update
false

Expression &

Flowchart of break statement with for loop

Simple Progam example of break statement:

#include<stdio.h>

#include<conio.h>

int main()

{
int i;

for(i=1; i<10; i++)

{
Cantigue statement
if(i==5)
phe,gontinue statement skips the current iteration of the loop and continues with the next iteration. The continue statement is used inside the

body of loop statement. it is used when we want to go to the next iteration of the loop after skipping the some of the statement of loop.

https://parajulirajesh.com.np/c-programming/ 52/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

}

Gbtebiference between break and continue is that when a break statement is encountered the loop

@utpinates and the control is transferred to the next statement following the loop, but when a continue

$tat@mhént is encountered the loop is not terminated and the control is transferred to the beginning of the

loop.

Its syntax is:

continue;

Program example using continue:

#include<stdio.h>

int main()

{
int i;

for(i=1;i<=1 0;i++){

if(iz=5){

continue;

}
printf(“%d\n",i);

}
printf(“out of for loop”);

return 0;

output:

O
N

D
B

W
N

=

8

10

out of for loop

goto statement

Goto statement in C is a jump statement that is used to jump from one part of the code to any other part of the code in C. Goto statement helps

in altering the normal flow of the program according to our needs. This is achieved by using labels, which means defining a block of code with a

name, so that we can use the goto statement to jump to that label.

Syntax:

https://parajulirajesh.com.np/c-programming/ 53/84

9/7/25, 7:54 PM

label_name:

.statement1;

.statement2;

.statementn;

goto label_name;

Q.Simple program using goto statement

#include<stdio.h>

void main()

{

int a=1;

repeat:

if(a<=10)

printf(” %d”,a);

att;

goto repeat;

}
Output:

12345678910

Function

C Programming - parajulirajesh.com.np

A function is a block of code that performs a specific task when it is called.

The function is also known as procedureor subroutine in other programming languages. Function enable us to write code separately for different

functions.

Syntax:

return_type function_name(parameter list)

{
body of the function

}

Types of function

There are two types of function in C programming:

1. Standard library functions

2. User-defined functions

Standard library functions: Library functions are predefined / built in functions.

For example: printf(), scanf();, getch(), sqrt(), etc. These functions are defined in header files.

User Defined functions: Those functions that are created by user as per his/her need. Such Functions are known as User Defined functions.

https://parajulirajesh.com.np/c-programming/ 54/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Function prototype, Definition, and call

¢ Function prototype is also called funciton declaration. Function declaration is done above of the main function. Passing arguments in the

function declaration and function definition are formal parameters which copied the values from actual parameters. Formal parameters are

always in variables.

¢ Function Definition is a block of code that define the specific task that are enclosed with {}.

e Function call is done inside the main function. Passing the arguments while calling function is actual parameters. Actual parameters can

be both values or variables.

Define actual and formal parameters?

Actual and formal parameters are two different forms of parameters that we use while declaring, defining and invoking a function. The actual

parameter is the one that we pass to a function when we invoke it. On the other hand, a formal parameter is one that we pass to a function when

we declare and define it.

BASIS FOR
ACTUAL PARAMETER FORMAL PARAMETER

COMPARISON

Definiti They are actual values passed to a function on which _ They are the variables in the function definition that would
efinition

the function will perform operations receive the values when the function is invoked

Occurrence It occurs when we invoke a function It occurs when we declare and define a function

Provided by Either by the programmer or by the user Only by programmer

Data types are not mentioned with the actual .
Data types Data types are mentioned along the formal parameters

parameters

Form It can be a value or a variable It is always a variable

int add (int x, int y) {

Example add (a, b); //body

Different Ways of Calling a Function:

Depending on whether the function accepts arguments or not and returns a value or not, there can be four different aspects of C function calls,

which are:

https://parajulirajesh.com.np/c-programming/ 55/84

9/7/25, 7:54 PM

// Example of Function Without arguments and

without return

#include<stdio.h>

void greater();

void greater()

{
int a,b;

printf(“enter two numbers:”);

scanf(“%d%d",&a,&b);

if(a>b)

{
printf(“%d is greater”, a);

}
else

{
printf(“%d is greater”, b);

}

}
int main({

greater();

return 0;

TO perferm sum

// Example of Function Without arguments and

without return

#include<stdio.h>

void sum();

void sum()

{
int a,b, c;

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

//Example of function with arugments and with

return

#include<stdio.h>

int greater();

int greater(int a, int b)

{
if(a>b)

return a;

else

return b;

}
int main()

{

int a,b,c;

printf(“enter a and b:”);

scanf(“%d%d",&a,&b);

c=greater(a,b); //

printf(“greater is %d”,c);

return 0;

}

To Perform sum

//Example of function with arugments and with

return

#include<stdio.h>

int sum(int int);

int sum(int x, int y)

{
int Z=x+y;

return Z;

//Example of Function with argument without

return

#include<stdio.h>

void greater(int x, int y);

void greater(int a, int b) // formal parameters

{

if(a>b)

{
printf(“%d is greater”, a);

}
else

{

printf(“%d is greater”, b);

}
}
int main({

int x,y;

printf(“enter two numbers:”);

scanf("%d%d",&x,&y);

greater(x,y); // actual parameters are copied to

formal parameter

return 0;

To Perform Sum

//Example of Function with argument without

return

#include<stdio.h>

void sum(int int);

void sum(int x, int y)

{
int s;

S=xty;

printf(“sum is %d”,s);

// Example of Function Without arguments and

with return

#include<stdio.h>

int greaternumber();

int greaternumber(){

int a,b;

printf(“enter two numbers:\n’);

scanf(“%d%d",&a,&b);

if(a>b)

return a;

else

return b;

}
int main()

{
int greater;

greater=greaternumber();

printf(“%d is greater”,greater);

return 0;

To perform sum

// Example of Function Without arguments and

with return

#include<stdio.h>

int sum();

int sum({

int Xy, S;

printf(“enter two numbers:\n’);

56/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

‘intf(“enter two numbers:’); } } scanf(“%d%d" &a,&b);

sanf(“%d%d",&a,&b); int main() int main() S=X+y;

c=atb; { { return s;

printf(“Sum is %d”, c); int a,b,s; int a,b,s; }

int main(){ printf(“enter two number\n:’); printf(“enter two number\n:’); int main()

sum(); scanf(“%d%d", &a, &b); scanf("%d%d", &a, &b); {

return 0; int a;

s=sum(a,b); s=sum/(a,b); a=sum();

} return 0; printf(“%d is sum’,a);

prinftf(“%d is sum”, s); } return 0;

return 0;

} }

There are two methods to pass the data into the function in C language, i.e., call by value and call by reference.

HOW TO CALL C FUNCTIONS IN A PROGRAM?

1. Call by value

2. Call by reference

1. CALL BY VALUE:

In call by value method, the value of the variable is passed to the function as parameter.

The value of the actual parameter can not be modified by formal parameter.

Different Memory is allocated for both actual and formal parameters. Because, value of actual parameter is copied to formal parameter.

Note:

Actual parameter — This is the argument which is used in function call.

Formal parameter — This is the argument which is used in function definition

EXAMPLE PROGRAM FOR C FUNCTION (USING CALL BY VALUE):
“an on

In this program, the values of the variables “m” and “n” are passed to the function “swap”.
aan

These values are copied to formal parameters “a” and “b” in swap function and used.

#include<stdio.h>

// function prototype, also called function declaration

void swap(int a, int b);

int main()

{
int m = 22,n = 44;

// calling swap function by value

printf(” values before swap m = %d \nand n = %d”, m, n);

swap(m, n);

}
void swap(int a, int b)

{
int tmp;

tmp =a;

https://parajulirajesh.com.np/c-programming/ 57/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

a=b;

b = tmp;

printf(” \nvalues after swap m = %d\n and n = %d”, a, b);

}

2. CALL BY REFERENCE:

In call by reference method, the address of the variable is passed to the function as parameter.

The value of the actual parameter can be modified by formal parameter.

Same memory is used for both actual and formal parameters since only address is used by both

parameters.

EXAMPLE PROGRAM FOR C FUNCTION (USING CALL BY REFERENCE):

aan an
In this program, the address of the variables “m” and “n” are passed to the function “swap”.

These values are not copied to formal parameters “a” and “b” in swap function.

Because, they are just holding the address of those variables.

This address is used to access and change the values of the variables.

#include<stdio.h>

// function prototype, also called function declaration

void swap(int *a, int *b);

int main()

{
int m = 22,n = 44;

// calling swap function by reference

printf(“values before swap m = %d \n and n = %d”,m,n);

swap(&m, &n);

}
void swap(int *a, int *b)

{
int tmp;

tmp = *a;

*a = *b;

*b = tmp;

printf(“\n values after swap a = %d \nand b = %d”, *a, *b);

}

No. Call by value Call by reference

1 A copy of the value is passed into the function

Changes made inside the function is limited to the function only. Changes made inside the function validate outside of the function

2 The values of the actual parameters do not change by changing also. The values of the actual parameters do change by changing

the formal parameters. the formal parameters.

https://parajulirajesh.com.np/c-programming/

An address of value is passed into the function

58/84

9/7/25, 7:54 PM

Actual and formal arguments are created at the different memory

location

swapping.c

1 #include<stdio.h>

2 void swap(int, int);

3 void swap(int x, int y)

4h {
S int temp;

6 temp=x;

- xsy3

8 y=temp;

9 printf("values after swapping are %d,%d",x,y)5

10° }

114) int main(){
12 int a,b;

13 printf("enter two numbers for swapping: \n") ;

14 scant ("%d%d",&a,&b) 5

15 printf("values before swap are: %d,%d\n",a,b);

16 swap(a,b);

17 return 6;

CAUsers\Asus\Desktop\C pro. X ape || 34

enter two numbers for swapping:

10

30
values before swap are: 10,30

values after swapping are 30,10

| Process exited after 5.003 seconds with return value 0

Press any key to continue .

Recursion

Function that call itself is called recursion. While using recursion, programmers need to be careful to define an exit condition from the function,

otherwise it will go into an infinte loop.

Syntax:

void recursion() {

recursion(); /* function calls itself */

}
int main()

{
recursion();

}

//Example of recursion program with argument with return.

#include<stdio.h>

int factorial(int x); //function declaration with argument

int main() //main function

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

Actual and formal arguments are created at the same memory

location

swapping.c

1 #include<stdio.h>

2 void swap(int *x, int*y);

3 void swap(int *x, int *y)

48 {
5 int temp;
6 temp=*x;}

x *x=ty5
8 *y=temp;

9 printf("values after swapping are %d,%d",*x,*y);

10°}

114 int main(){
12 int a,b;

13 printf("enter two numbers for swapping: \n");

14 scanf("%d%d" ,&a,&b) ;

15 printf("values before swap are: %d,%d\n",a,b);

16 swap(&a,&b);

17 return 9;

18‘ }

C:\Users\Asus\Desktop\C pro. X te

enter two numbers for swapping:

values before swap are: 10,50
values after swapping are 50

er iy R Process exited after 6.964 seconds with return value 0

fe Press any key to continue

//Example of recursion function to find n terms of ficonacci series

#include <stdio.h>

int fibonacci(int); // function declaration

59/84

9/7/25, 7:54 PM

{

int a; //declaration for input n number to find its factorial

printf(“enter number to find factorial:”);

scanf(“%d”,&a); // taking user input number

int fn; //assume variable to store function call, you also can call it

directly.

fn=factorial(a); //function call by value with actual argument

printf(“factorial is %d”, fn); //displaying function call value

return 0;

}
factorial(x)//function defintion with formal argument

{
if(x==1)

return 1;

else

return x*factorial(x-1); //function call itself

}

Unit-5 Array, Pointer String

Array:

C Programming - parajulirajesh.com.np

//function definition section start

int fibonacci(int x) {

if(x == 0) {
return 0;

}

if(x == 1) {
return 1;

}
else

return fibonacci(x-1) + fibonacci(x-2); //function call itself

}

//main function section start

int mainQ {

int a;

printf(“enter a number:”);

scanf("%d",&a);

int y;

for (y = 0; y< a; y++) {

printf(“%d\n", fibonacci(y));

}
return 0;

}

An array is a collection of values of similar kinds of data types. Values in array accessed using array name with subscripts in brackets|]. Syntax

of array declaration is:

data_type array_name[size];

#include<stdio.h>

int main()

{

int i,a[10]={10,20,39,58,19};

for(i=0;i<10;i++)

{
printf(“%d\n",ali]);

https://parajulirajesh.com.np/c-programming/ 60/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

}

return 0;

}
Output:

10

20

39

58

9
o
o
o
0
o
°
9
°

=

Declaration and initialization of array

An array is a variable that can store multiple values. For example, if you want to store 100 integers, you can create an array for it.

dataTypearrayNamelarraySize];

int data[100];

It is possible to initialize an array during declaration. For example,

int mark[5] = {19, 10, 8, 17, 9};

You can also initialize an array like this.

int mark[] = {19, 10, 8, 17, 9};

Accessing array

Array can be accessed using array-name and subscript variable written inside pair of square brackets [].

for example:

arr[3] = Third Element of Array

arr[5] = Fifth Element of Array

arr[8] = Eighth Element of Array

// Program to take 5 values from the user and store them in an array

// Print the elements stored in the array

#include <stdio.h>

int main()

{

int i, array[5];

printf(“Enter 5 integers: “);

// taking input and storing it in an array

https://parajulirajesh.com.np/c-programming/ 61/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

for(i = 0; i < 5; i++)

{
scanf(“%d", &array[i]);

}
printf(“printing those values: “);

// printing elements of an array

for(i = 0; i < 5; ++i)

{
printf(“%d\n”, arrayli]);

}
return 0;

}

//C Program to find smallest element in an array

#include<stdio.h>

int main() {

int a[30], i, num, smallest;

printf(“\nEnter no of elements :”);

scanf(“%d", &num); //Read n elements in an array

for (i = 0; i < num; i++)

scanf(“%d", &ali]); //Consider first element as smallest

smallest = a[0];

for (i = 0; i < num; i++) {

if (a[i] < smallest) {

smallest = ali]; }} // Print out the Result

printf(“\nSmallest Element : %d”, smallest);

return (0);

}

https://parajulirajesh.com.np/c-programming/ 62/84

9/7/25, 7:54 PM

#include

int main()
F

int marks[1@];

int

for (i=051<10;i++){ enter marks of
£(" siti marks of % st ud ts: ",d41)3 F enter marks of Multia isi attay more than one ind@iaal

tea onal Ainevs enter marks of

for(i= @3i<10;i++) enter marks of

datatype array namellOt.. enter marks of
=i+1;j<le enter marks of

\ enter marks of
if(marks[[i]>marks[j]) ee

of

of

w
o
a
n
n
n
a
n
k
l
w
n
r
n

C Programming - parajulirajesh.com.np

C:\Users\Asus\Desktop\C pro

students:

students;
students:

students:
students:

students:

students:
students:

10 students:

C:\Users\Asus\Desktop\add2.

Resultant Matrix:

68

Process exited after 0.03

em 5 enter marks 2
write a : tOogram to add 2*2 mackie ov clucents in ascending order:45

marks[j]=temp; 50

} include <stdio.h>
print . F
for(i int pope 1.

:* int matrixi[2][2 | » ff4, 2%,
retur ‘ 4} 1.

} i-?} Jj3

Declaration and initialization of the

int matrix2[2][2] = {{55 G}s

(75 S}}5

int reat 1[2];

int i;ji

Adding corresponding elements of matr

for(i = 63 i < 23 i++) {

for(j = @} j < 25 j++) {
result[i][j] = matrixi[i][j] + matrix2[i][j]i

}
1
J

pr sntf (heal teat Matrix: idl

for(i = @5 i < 25 i++) |
for(j = @3 j < 23 j++) {

printf("%d “, result[{i][j]);
a
J

printf("\n");
}

return @;
, }

Press any key to continue

C program to add two 2x2 matrices based on user input ?

https://parajulirajesh.com.np/c-programming/

ray:

63/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

#include<stdio.h>

int main()

i{
int matrix1[2][2], matrix2[2][2], result[2][2],i,j;

printf("enter the values of first matrix:");

| for(i=0;i<2;i++){
J for (j=0; 4<2; j++) {

scant("%d", &matrix1[i][j]);

- } ; C:\Users\Asus\Desktop\addm te v

printf("enter the values of second matrix:");

] for (i=@;i<2;i++){ enter the values of first matrix:1

] for (j=; 4<2; j++)
scanf("%d" ,&matrix2[i][j]);

E }
7 }

printf("add two matrices:");

| for(i=0;i<2;i++){

J for (j=0; j<2; j++) {

result[i][j]=matrix1[i][j]+matrix2[i][7]; [EQGRa me ugme-teae)

printf ("%d\t",result[i][j]);

F }
printf("\n");

ji } Process exited after 6.093 seconds with return value 0
Press any key to continue. . . |

return 6;

Pa

c program to multiply 3*3 matrices by taking matrix values from user

input.

https://parajulirajesh.com.np/c-programming/ 64/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

| mmui.c C:\Users\Asus\Desktop\C pro ++ | ™

int main(Enter first 3*3 matrix element: 1

rite-ac:¢ programeto:implementi
és 6 for(i=@; i<3; i«

: oa
int a[2)| »6[3)(2) res[2)[2],4,5,%,sum=€;
print+(“enter first matrix elements:"

: for (isé; l<2; i++

f —

| = C:\Users\Asus\Desktop\C pro ae v

enter first matrix elements:1
Pr print: (“enter second matrix elements:"); 2 or (40831633144)
: i 3

4 | u
c at 5

am Y 6
olor nil Romper gaa enter second matrix elements:1

J for 2; j+ 2

J 3
for " 4

z ee 6
i add two matrices:22

for(int s4e2;i44

J for

- a —_ Process exited after 13.72 seconds with return value 0
Press any key to continue

https://parajulirajesh.com.np/c-programming/ 65/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

// c program to multiply m1[3][4], m2[4][2]

#include<stdio.h>

int main()

{
int res[3][2],m1[3][4],m2[4][2],i1,],k, sum-0;

printf("“enter the values of first matrix:");

For (i=@;1<3; i++)

if
for (j=8;7<4; j++)

t

}
scanf("%d" ,&m1[i][j]);

I
printf("enter the values of second matrix:”");

for(i=0;i<4; i++)

t
for (j=0; j7<2; j++)

t

}
scanf("%d" ,&m2[i][7]);

I
printf("“performing multiplication”);

for(i=6;i<3;i++)

i
for(j=0;4<2; j++)

t
sum=6;

for (k=0;k<4;k++)

{
sum=sumem1[i][k]*m2[k][4];
res[i][j]=sum;

https://parajulirajesh.com.np/c-programming/

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

printf (“displaying result of multiplication");

for(i=@;i1<3;i++)

Difference Between Malloc and Calloc Memory Allocation.
neal

Malloc Memory Allocation Calloc Memory Allocation

Malloc Stands for memory allocation. Calloc Stands for contiguous memory

allocation.

Malloc creates a single memory block of | Calloc can allocate multiple memory

a user-specified size. blocks to a variable.

The malloc function is initialized to The calloc function are always initialized

garbage values if no value given. to Zero.

Malloc is faster in speed. Calloc is slower than malloc in speed.

The number of arguments is 1 i.e The number of arguments is 2 i.e

byte size. number of memory blocks and size of

memory block.

Syntax: Syntax:

int*ptr=(int*)malloc(n*sizeof(int)); int*ptr=(int*)calloc(n,sizeof(int));

#include <stdio.h>

#include <stdlib.h>

int main() {

int *num1, *num2, *sum;

// Allocating memory for integers using malloc

num1 = (int*) malloc(sizeof(int));

num2 = (int*) malloc(sizeof(int));

sum = (int*) malloc(sizeof(int));

if (num1 == NULL || num2 == NULL || sum == NULL) {

printf(“Memory allocation failed!\n’);

return 1;

}

// Input numbers

printf(“Enter first number: “);

scanf(“%d", num1);

printf(“Enter second number: “);

scanf(“%d", num2);

https://parajulirajesh.com.np/c-programming/ 67/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

// Perform addition

*sum = *num1 + *num2;

// Display result

printf(“Sum: %d\n”, *sum);

// Free allocated memory

free(num1);

free(num2);

free(sum);

return 0;

}

Concept of Pointer, pointer address, dereference, declaration,assignment, intializaion

Pointer

A pointer is a variable that stores the memory address of another variable as its value. Pointer variable is always preceded by * operator.

if a pointer variable p is declared as : int *p;

it signifies p is pointer variable and it can store address of integer variable (i.e. it can not store address of other type’s variables.

* operator is deference operator

& operator is reference operator

An indirection operator, is an operator used to obtain the value of a variable to which a pointer points. While a pointer pointing to a variable

provides an indirect access to the value of the variable stored in its memory address, the indirection operator dereferences the pointer and

returns the value of the variable at that memory location. The indirection operator is a unary operator represented by the symbol (*). The

indirection operator is also known as the dereference operator.

Valid Examples:

int *p;

int num;

p=#

Invalid Examples:

int *p;

float num;

p=# /* invalid pointer variable p cannot store address of float variable */

Pointer Declaration

A pointer variable is declared as follows:

https://parajulirajesh.com.np/c-programming/ 68/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Syntax:

data_type * variable_name;

here, *is called indirection or dereference operator and variable_name is now pointer.

Example:

int *x;

float *y;

char *rajesh;

Simple Program Example:

#include<stdio.h>

int main()

{
int a=50;

int* b=&a;

printf(“%d is value of a variable\n’,a);

printf(“%d is the value of pointer\n’,*b);

printf(“%p is the memory address of pointer variable\n’, b);

printf(“%p is the address of pointer\n’,&a);

return 0;

}

Output:

50 is value of a variable

50 is the value of pointer

000000000062FE14 is the memory address of pointer variable

000000000062FE14 is the address of pointer

Write a c program to add to numbers using Pointer

https://parajulirajesh.com.np/c-programming/ 69/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

pointer_sum.c

#include<stdio.h>

int main(){

int a,b,sum;

printf("enter two numbers: \n");

scanf("%d %d",&a, &b);

int *x=&a;

int *y=&b;

sum=*x+*¥y 5

printf("sum is %d",sum);

return @;

C:\Users\Asus\Desktop\C pro. X 3

enter two numbers:

30

50

sum is 80

| Process exited after 6.852 seconds with return value

Press any key to continue...

Pointer Arithmetic

Pointer Arithmetic refers to arithmetic operations on pointers. Since pointers store memory addresses, Pointer Arithmetic operations help

navigate through memory locations efficiently.

1. Types of Pointer Arithmetic

You can perform the following operations with pointers in C:

1. Increment (ptr++) — Moves to the next memory location.

2. Decrement (ptr--) — Moves to the previous memory location.

3. Addition (ptr + n) —- Moves n positions forward.

4, Subtraction (ptr - n) —- Moves n positions backward.

5. Pointer difference (ptr2 - ptri) — Finds the number of elements between two pointers.

1:Pointer Increment & Decrement

https://parajulirajesh.com.np/c-programming/ 70/84

9/7/25, 7:54 PM

#include <stdio.h>

int main() {

int arr[] = {10, 20, 30, 40, 50};

int *ptr = arr; // Pointer to the first element

printf(“Initial pointer value: %d\n’, *ptr);

ptr++; // Move to the next element

printf(“After increment: %d\n’, *ptr);

ptr-; // Move back to the first element

printf(“After decrement: %d\n’, *ptr);

return 0;

}

Output:

Initial pointer value: 10

After increment: 20

After decrement: 10

2: Pointer Addition and Subtraction

#include <stdio.h>

int main() {

int arr[] = {5, 10, 15, 20, 25}:

int *ptr = arr; // Pointer to the first element

printf(“Value at ptr: %d\n”, *ptr);

ptr = ptr + 2; // Move two positions forward

printf(“After ptr + 2: %d\n’, *ptr);

ptr = ptr — 1; // Move one position backward

printf(“After ptr — 1: %d\n’, *ptr);

return 0;

}

STRINGS:

C Programming - parajulirajesh.com.np

#include <stdio.h>

int main() {

int num = 10;

int *ptr = # // Pointer pointing to num

printf(“Address of num: %p\n’, ptr);

ptr = ptr + 1; // Move the pointer forward by 1 int (4 bytes)

printf(“Address after addition: %p\n’, ptr);

ptr = ptr — 1; // Move the pointer back to original position

printf(“Address after subtraction: %p\n’, ptr);

return 0;

}

An array of characters are known as Strings. There are various built-in string handling functions in c. Some of them are:

1. strepy()

2. strceat()

3. stremp()

https://parajulirajesh.com.np/c-programming/ 71/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

4. strempi()

5. strupr()

6. strlwr()

7. strrev()

#include <stdio.h>

#include <string.h> // Required for string handling functions

// Main function

int main() {

// Declare string variables

char str1[50] = “Hello”;

char str2[50] =” World”;

char str3[50];

// strepy: Copying string

strepy(str3, str1); // Copy content of str1 into str3

printf(“After strcpy, str3: %s\n", str3); // Output: Hello

// strcat: Concatenate strings

streat(str1, str2); // Concatenate str2 to str1

printf(‘After strcat, str1: %s\n”, str1); // Output: Hello World

// strlen: Find the length of a string

int len = strlen(str1); // Get the length of str1

printf(“Length of str1: %d\n”, len); // Output: 12

// strupr: Convert string to uppercase

strupr(str1); // Convert str1 to uppercase

printf(“After strupr, str1: %s\n”, str1); // Output: HELLO WORLD

// strlwr: Convert string to lowercase

strlwr(str1); // Convert str1 back to lowercase

printf(“After strlwr, str1: %s\n", str1); // Output: hello world

// strrev: Reverse the string

strrev(str1); // Reverse str1

printf(“After strrev, str1: %s\n’, str1); // Output: dlrow olleh

return 0;

}

https://parajulirajesh.com.np/c-programming/ 72/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

1 #include<stdio.h>

2 int main()

308
4 char str[20];

5 printf("“enter string:\n");

6 gets(str); read string with space by compiler as scanf functior

7 printf("“entered string is: ");

8 puts(str); //display string

9 return @;

10 |

C:\Users\Asus\Desktop\C pro’ X oh od

enter string:
rajesh parajuli
entered string is: rajesh parajuli

#include<st

Process exited after 5.13 seconds with return value 0

Press any key to continue
struct stude

{

Structure:
char name[30];

her gander Withe collection of different data types grouped under the same name using the struct keyword. It is also known as the user-

RAR data type that enables the programmer to store different data type records in the Structure. Furthermore, the collection of data elements

thside the Structure is termed as the member.

int main() {

struct student st;

st.id = 1;

// Use strcpy to assign string values to character arrays

strepy(st.name, “rajesh”);

strcpy(st.gender, “male’);

st.age = 28;

// Print the struct values

printf(“id is %d\n”, st.id);

printf(“name is %s\n", st.name);

printf(“gender is %s\n”, st.gender);

printf(“age is %d\n”, st.age);

https://parajulirajesh.com.np/c-programming/ 73/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

return 0;

}

Write a c program using structure to input staff idjname, and the salary of 50 staffs. Display staff
id, name and salary of those staff whose salary range from 25 thousands to 40 thousand.

#include<stdio.h>
struct staff{
int id;
char name[30];
double salary;
hs
int main()

struct staff s[50];
int i;

//input data of 50 students
for(i=0;i<50;i++)

printf(“\n%d staff details: “,i+1);
printf(“\nenter staff id: “);
scanf(“%d”, &s|i].id);
printf(“enter staff name: “);
scanf(“%s”, s[i].name);
printf(“enter staff salary : “);
scanf(“%lf”, &s[i].salary);
}
//printing 50 students entered details with given condition
printf(“\nStaff with salary between 25,000 and 40,000:\n’);
for (i = 0; i < 50; i++) {

if (s[i].salary >= 25000 && s|i].salary <= 40000) {
printf(“\n%d staff details: “ji+1);
printf(“\nstaff id:%d”,s[i].id);
printf(“\nstaff name:%s”,s[i].name);
printf(“\nstaff salary:%lf”,s[i].salary);

}
}
return 0;

}

https://parajulirajesh.com.np/c-programming/ 74/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Simple c program using structure:

struct.c

1 #include<stdio.h>

2 struct student

3A f{
int s_id;

char s_name[20];

char s_address[20];

int s_marks;

main(){

struct student st;

printf(“enter student id:\n");

scanf("%d",&st.s_ id);

printf("enter

scanf("%s",st

printf ("enter

scant("%s", st

printf("enter

scanf("%d", &st.s_marks);

printf("Displaying student information: \n");

printf ("%d

printf("%s

printf ("%s

printf ("%d

return @;

is

is

is

is

student name:\n");

-S_name);

student adress:\n");
-s_address);

student marks: \n");

dd\n", st.s_id);

name\n", st.s_name);

address\n", st.s_address);

marks\n", st.s_marks);

C:\Users\Asus\Desktop X +i é p

enter student id:

iL
enter student name:

rajesh

enter student adress:
sukhad

enter student marks:
80

Displaying student information:

1 is id
rajesh is name

sukhad is address

Process exited after 27.04 seconds with retur

n value 9
Press any key to continue .

Write a c program to store information of 5 employee(empid, name,

salary) and display it using structure variable. (Most Important for Exam

+2, BCA, BICTE)

https://parajulirajesh.com.np/c-programming/ 75/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

Bema « regres | eae ae Wena enter employee's

LI] glcobals) 1 .

rajesh
["]struct.c simplestructureofc.c [*] structureprogram.c 5000

1 #include<stdio.h> enter employee's

2 struct employee

3B { suman
4 int e_id; 6000

5 char e_name[20]; enter employee's i salary
6 float e_salary; 3
w= }y akash

84 ant main(){ 7000

9 struct employee e[5]; enter employee's salary

10 int i; e .
11 for(i=0;i<5;i++) prabin
128 { 8000 _—

13 printf("enter employee's id, name and salary\n"); enter employee's salary

14 scanf("%d %s %f", Ge[i].e_id, e[i].e_name, &e[i].e_salary); 5
15+ } ganesh

17 for(i=0;i<5;i++) 1
18 { rajesh

19 printf("Kd\n %s\n %f", efi].e_id, e[i].e_name, e[i].e_salary); apie: Carer
20 F
21 _— @: 6000. 0000003

a7} , akash
7000 .0000004
prabin
8000 .0000005
ganesh
9000 .000000

iiler Kah Resources ih Compile Log AF Debug fey Find Results

Structure pointer

https://parajulirajesh.com.np/c-programming/ 76/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

[*]sa.c structurepointer.c

4| 1 #include<stdio.h>

[, 2 struct student

- 3) {
"4 int s_id;
i 3 char s_name[2@];

-) Si =) Fs
i 7 int main()

1 8H {
——, struct student s;

‘18 struct student *ptr = &s;

iii print#("enter student id:\n");

) | 42 scanf("%d",&(*ptr).s_id);
13 print#("enter student name:\n");

| 414 scant("“%s",(*ptr).s_name) ;

(15 printf("the student id is %d\n", (*ptr).s_id);

_ 16 print#("the student name is %s", ptr->s_name);

a7 return @;

{18 © }

C:\Users\Asus\Desktop\C pro. xX ae

enter student id:

5

enter student name:

+ My Res rajesh
i ® the student id is 5

Filé Han the student name is rajesh

A file ipaasNer i Process exited after 6.859 seconds with return value 0
Pree Press any key to continue... | Hing,

writing, moving toa ,

File handling is the process of storing data in the form of input or output produced by running C programs in data file for future reference and

analysis. File handling provides a mechanism to store the output of a program in a file and to perform various operations on it.

File handling concept provides various operations like creating a file, opening a file, reading a file or manipulating data inside a file etc.

Why file handling?

The data stored in the various of a program will be lost once the program is terminated because they are stored in the Random Access

Memory(RAM) which is volatile memory. So, if we want store that data(input/output) used in the program permanently inside the secondary

storage device so that, we can access these data from there whenever it is needed file handling concept is important.

https://parajulirajesh.com.np/c-programming/ 77184

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

File handling in C enables us to create, update, read, and delete the files stored on the local file system through our C program. Some operations

can be performed on a file.

¢ Creation of the new file

¢ Opening an existing file

¢ Reading from the file

¢ Writing to the file

¢ Deleting the file

C provides a number of build-in function to perform basic file operations:

e fopen() - create anew file or open a existing file

e fclose() -closeafile

e getc() -readsacharacter froma file

e putc() - writes acharacter toa file

e fscanf() - reads aset of datafroma file

e fprintf() - writes aset of data toa file

e getw() -readsainteger froma file

e putw() - writes ainteger toa file

e fseek() - set the position to desire point

e ftell() - gives current position in the file

e rewind() - set the position to the beginning point

Various File opening modes inc

https://parajulirajesh.com.np/c-programming/ 78/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

- open a file in read mode

e w -opensor create a text file in write mode

e a -opensafilein append mode

e r+ -opensa file in both read and write mode

e at -opensa filein both read and write mode

e w+ -opensa file in both read and write mode

File Operation Modes:

The different file m in ning fil

If the file doesn't exist then this mode creates a new file for writing, and if the file already exists then
“ww”? (write) the previous data is erased and the new data entered 1s written to the file.

This mode is used for opening an existing file for reading purpose only. The file to be opened must
“r* (read) exist and the previous data of the file is not erased.

If the file doesn't exist then this mode creates a new file and if the file already exists then the new data

“a” (append) entered is appended at the end of existing data. In this mode, the data existing in the file is not erased as
in at a mode.

This mode is same as “w” mode but in this mode we can also read and modify the data. If the file
wt” (write+read) doesn't exist then a new file is created and if the file exists then previous data is erased.

This mode is same as “r” mode but in this mode we can also write and modify existing data. The file to

“r+” (read + write) be opened must exist and the previous data of file is not erased, Since we can add new data and modify
existing data so this mode is also called update mode.

Cree ating a file free same as the “a” mode but in this mode we can also read the data stored in the file. If the
(appen 19 a, ile ee exist, a new file ts created and if the file already exists then new data is appended at the end

—_ nfevicting data Woe cannnat modify avictina data in thie mada
["] createfileinc.c

1 //c program to create a file
#include<stdio.h>

int main(){

FILE *ptr=NULL; //declore file pointer and assigned it to NULL value becouse of not to store gorbage volue
ptr=fopen("rajesh.txt","w"); //create a text file named rajesh
fclose(ptr); //closing a file with providing pointer variable as argument

return 6;

w
a
n

n
u
n

&

w
h

https://parajulirajesh.com.np/c-programming/ 79/84

9/7/25, 7:54 PM

Write ac program to write name, roll no and marks of students in file

using fprintf function.

Write a c program to store

filehandlingdatareading.c

#include<stdio.h>

int main()
f
4

FILE *fp;

char name[26];

int rollno;

float marks;

fp=fopen("ram.txt", "w");

if (#p==NULL)
i

1

printf("File can not open
} }

printf("Enter Name: ");
gets(name);

C Programming - parajulirajesh.com.np

-")3

print#("Enter roll.no: ");

scant ("%d",&rolinc);

printf("Enter marks: ");

scant ("Sf" ,&marks) ;

printf("Now writing data into file..... yb
fprintt (+p, "Name=%s \nRoll .no=%d\nMarks=%.1f",name,rollno,marks) ;

#close(fp);

getch();
return 6;

File Edit View

Name=rajesh
Roll.no=5
Marks=16.8

important for +2, BCA, BICTE, BIT)

https://parajulirajesh.com.np/c-programming/ 80/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

#include<stdic.h>

struct student
f
L

int st_id;
int st_name[2@];

i

int main(){

FILE *ptr;
struct student s[5];

int i;

for (i=@5 1<5; i++)
fr
t

printf(“enter id and name of students:") ;
scant("%d 4s",&s[i].st_id,s[i].st_name);
4
J

//to write these information on our file

ptr=fopen("studentfile.txt", "w");
if (ptr==NULL)

{
printt("file not open");

}
for (i=@5 1<5j; i++)

{
fprintf(ptr,"Id=%d, Name=%s\n",s[i].st_id, s[i].st_name);//storing data into file

st_name jam
C:\Users\Asus\Desktop\C pro X + | Edit View

enter id and name of students:1

rajesh
enter id and name of students:

suman
enter id and name of students:

akash
enter id and name of students:

aashish

enter id and name of students:
mahendra

Name=rajesh

Name=suman

Name=akash

Name=aashish
Name=rajesh
Name=suman

Name=akash
Name=aashish

Name=mahendra

Name=mahendra

Process exited after 41.1 seconds with return value 0
Press any key to continue .. .

Formatted input output in file handling inc

Formatted Input and Output in File Handling (C) In C, file handling functions can also support formatted input and output, just like printf() and

scanf() work for standard input and output. For files, we use fprintf() and fscanf() for formatted writing and reading, respectively.

¢ fprintf() is used to write formatted data to the file.

https://parajulirajesh.com.np/c-programming/ 81/84

9/7/25, 7:54 PM

° fscanf() is used to read formatted data from the file.

¢ fprintf(file, “Age: %d\n”, age);

¢ fscanf(file, “Age: %d\n”, &age);

#include <stdio.h>

int main() {

FILE *file;

int age = 30;

float salary = 55000.50;

// Open file for writing

file = fopen(“formatted_data.txt”, “w’);

if (file == NULL) {

printf(“Error opening file for writing.\n’);

return 1;

}

// Write formatted data to the file

fprintf(file, “Age: %d\n’, age);

fprintf(file, “Salary: %.2f\n’, salary);

// Close the file after writing

fclose(file);

// Open file for reading

file = fopen(“formatted_data.txt”, “r”);

if (file == NULL) {

printf(“Error opening file for reading.\n’);

return 1;

}

// Read formatted data from the file

int read_age;

float read_salary;

fscanf(file, “Age: %d\n", &read_age);

fscanf(file, “Salary: %f\n”, &read_salary);

// Print the read data

printf(“Data read from file:\n’);

printf(“Age: %d\n”, read_age);

printf(“Salary: %.2f\n”, read_salary);

https://parajulirajesh.com.np/c-programming/

C Programming - parajulirajesh.com.np

82/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

// Close the file after reading

fclose(file);

return 0;

}

Error handling

File Handling Errors: When working with files, always check if a file is successfully opened. If fopen() returns NULL, the file couldn't be opened.

Example:

FILE *file = fopen(“example.txt’, “r’);
if (file == NULL) {

printf(“Unable to open a file.\n’);

return 1; // Exit program with an error code

}

File Operation

Basic File Operations in C

In C, file operations are done using the stdio.h library.

1. Opening a File (fopen): To open a file, use the fopen() function. You need to specify the file name and mode (r, w, a, etc.).

Example:

FILE *fopen(“xyz.txt”, “r’); //where xyz.txt is file and r is reading mode of the file

modes:

r: Read (file must exist)

w: Write (create file or overwrite)

a: Append (add data at the end)

2. Writing to a File (fprintf, fputs): To write data to a file, use fprintf() or fputs().

3. Reading from a File (fscanf, fgets): To read from a file, use fscanf() or fgets().

4. Closing a File (fclose)

https://parajulirajesh.com.np/c-programming/ 83/84

9/7/25, 7:54 PM C Programming - parajulirajesh.com.np

#include <stdio.h>
int main() {

FILE *file=NULL;

char ch;

// Open the file in read mode
file = fopen("grade.txt", "r");

// Check if file exists
if (file == NULL) {

printf("Error: Unable to open file!\n");

return 1;

}
printf("File content:\n");
// Read and display characters until EOF (End of File)
while ((ch = fgetc(file)) != EOF) {

putchar(ch);

}
// Close the file
fclose(file);|
Katiimnnmn Oe

Rajesh Parajuli Useful Links Worked with Location

\ +977-9847546279 > Home > BidhyaTech Ghodaghodi Municipality-1,

© parajulirajesh2072@gmail.com > Services > JK Arts Kailali Nepal

> Contact Me > MastaSoftsolution ee

£) y @ > Terms & Conditions 5 Ghodaghodi Multiple View larger map, te

Campus it foe Dhangadhi /

Sgogle
Map data ©2025 Google &

Copyright © 2025 parajulirajesh.com.np | Powered by parajulirajesh.com.np

https://parajulirajesh.com.np/c-programming/ 84/84

