
Introduction to Programming Concepts (Based on
C Programming)

1.1 Introduction of Programming Language (C Language)

A programming language is a computer language that gives commands and instructions to the computer to
perform specific tasks. A programming language is a set of rules and symbols used to write instructions
that a computer can understand and execute. Among various programming languages, C is one of the most
popular and powerful high-level programming languages. C is general purpose procedural programming
language.

The C programming language was developed by Dennis Ritchie in 1972 at AT&T Bell Laboratories. It is
widely used for system programming, application development, embedded systems, and operating
systems.

Characteristics of C Language

• Procedural and structured language
• Portable (machine independent)
• Efficient and fast
• Supports low-level memory manipulation
• Rich set of operators and libraries

Example of a Simple C Program

#include <stdio.h>

int main() {
 printf("Hello, World!\n");
 return 0;
}

This program prints Hello, World! on the screen.

1.2 Assembler, Compiler and Interpreter (with Reference to C)

Programs written in C or other languages cannot be directly understood by a computer. They must be
translated into machine language using language translators.

1. Assembler

An assembler converts assembly language programs into machine code.

• One assembly instruction corresponds to one machine instruction
• Faster execution
• Machine dependent

mnemonics or symbolics forms are used in assembly level program

2. Compiler

A compiler translates the entire high-level language program into machine code at once.

• C language uses a compiler
• Errors are reported after compilation
• Generates an executable file (.exe)

Example: The C compiler (GCC) converts a .c file into machine code.

3. Interpreter

An interpreter translates and executes a program line by line.

• Slower than compiler
• Stops execution when an error is found
• Used by languages like Python

Comparison Table

Feature Assembler Compiler Interpreter

Input
Assembly
Language

High-level (C) High-level

Translation One-to-one Whole program Line by line
Speed Fast Very Fast Slow
Example MASM C Python

1.3 Syntax and Semantics in C

Syntax

Syntax refers to the grammatical rules that must be followed while writing a C program. If syntax rules are
violated, the compiler generates syntax errors.

Example (Correct Syntax):

int a = 10;
printf("%d", a);

Example (Syntax Error):

int a = 10 (Missing semicolon)
printf("%d", a);

Semantics

Semantics refers to the meaning or logical correctness of statements in a program. A program may be
syntactically correct but semantically incorrect.

Example (Semantic Error):

int a = 10;
char b = 'A';
printf("%d", a + b);

The syntax is correct, but the logic may produce unexpected results.

1.4 Programming Design Tools (Using C)

Programming design tools help programmers plan a solution before coding in C.

1.4.1 Algorithm

An algorithm is a finite sequence of clear steps to solve a problem.

Characteristics of a Good Algorithm

• Well-defined input and output
• Clear and unambiguous steps
• Finite and effective

Algorithm to Find Sum of Two Numbers

1. Start
2. Read two numbers A and B
3. Compute SUM = A + B
4. Display SUM
5. Stop

1.4.2 Flowchart

A flowchart is a diagrammatic representation of an algorithm using standard symbols.

Common Flowchart Symbols

• Oval: Start / Stop
• Parallelogram: Input / Output
• Rectangle: Processing
• Diamond: Decision

Flowcharts help visualize program logic clearly.

1.4.3 Pseudocode

Pseudocode is a simple, informal way of writing program logic without following strict C syntax.

• Easy to understand
• Language independent
• Acts as a blueprint for C programs

Pseudocode Example

BEGIN
 READ A, B
 SUM = A + B
 PRINT SUM
END

1.5 Features of a Good C Program

A good C program should not only work correctly but also be efficient and easy to understand.

Features

1. Correctness
a. Produces correct output for all valid inputs.

2. Readability
a. Proper indentation and meaningful variable names.

3. Efficiency
a. Uses minimum CPU time and memory.

4. Modularity
a. Uses functions to divide the program into smaller parts.

5. Maintainability
a. Easy to modify and debug.

6. Portability
a. Can run on different systems with little or no change.

7. Proper Documentation
a. Uses comments for clarity.

Example of a Good C Program

#include <stdio.h>

int add(int a, int b) {
 return a + b;
}

int main() {
 int result = add(5, 3);
 printf("Sum = %d", result);
 return 0;
}

	Introduction to Programming Concepts (Based on C Programming)
	1.1 Introduction of Programming Language (C Language)
	Characteristics of C Language
	Example of a Simple C Program

	1.2 Assembler, Compiler and Interpreter (with Reference to C)
	1. Assembler
	2. Compiler
	3. Interpreter
	Comparison Table

	1.3 Syntax and Semantics in C
	Syntax
	Semantics

	1.4 Programming Design Tools (Using C)
	1.4.1 Algorithm
	Characteristics of a Good Algorithm
	Algorithm to Find Sum of Two Numbers

	1.4.2 Flowchart
	Common Flowchart Symbols

	1.4.3 Pseudocode
	Pseudocode Example

	1.5 Features of a Good C Program
	Features
	Example of a Good C Program

