
Unit 3: Inheritance and Interfaces

3.1 Inheritance Basics

Definition

Inheritance is a mechanism in Java where one class (child class) inherits the properties and
methods of another class (parent class).
 It helps in:

• Code reusability
• Method sharing
• Better program structure

Java supports single inheritance using classes.

Syntax

class ChildClass extends ParentClass {
}

Program

class Animal {
 void eat() {
 System.out.println("Animal eats food");
 }
}

class Dog extends Animal {
 void bark() {
 System.out.println("Dog barks");
 }
}

public class Main {
 public static void main(String[] args) {
 Dog d = new Dog();
 d.eat();
 d.bark();
 }

}

Output

Animal eats food
Dog barks

3.2 Inheritance and Constructors

Definition

In inheritance, parent class constructor is executed first, then child class constructor.
 This ensures that parent data members are initialized before child members.

Syntax

class Child extends Parent {
 Child() {
 }
}

Program

class Parent {
 Parent() {
 System.out.println("Parent constructor called");
 }
}

class Child extends Parent {
 Child() {
 System.out.println("Child constructor called");
 }
}

public class Main {
 public static void main(String[] args) {
 Child c = new Child();
 }
}

Output

Parent constructor called
Child constructor called

3.3 super Keyword

Definition

super keyword refers to the immediate parent class object.
 It is used to:

• Call parent class constructor
• Access parent class variables
• Call parent class methods

Syntax

super();
super.variable;
super.method();

Program

class Parent {
 int x = 10;

 void show() {
 System.out.println("Parent show method");
 }
}

class Child extends Parent {
 int x = 20;

 void display() {
 System.out.println(super.x);
 super.show();
 }
}

public class Main {
 public static void main(String[] args) {
 Child c = new Child();

 c.display();
 }
}

Output

10
Parent show method

3.4 Method Overriding

Definition

Method overriding occurs when a child class provides a specific implementation of a parent class
method.
 It supports:

• Runtime polymorphism
• Dynamic method calling

Syntax

class Child extends Parent {
 void method() {
 }
}

Program

class Parent {
 void show() {
 System.out.println("Parent version");
 }
}

class Child extends Parent {
 void show() {
 System.out.println("Child version");
 }
}

public class Main {
 public static void main(String[] args) {

 Child c = new Child();
 c.show();
 }
}

Output

Child version

3.5 Polymorphism

Definition

Polymorphism means one object behaving in many forms.
 It allows:

• Parent reference to point to child object
• Same method name with different behavior

Syntax

Parent ref = new Child();

Program

class Shape {
 void draw() {
 System.out.println("Drawing shape");
 }
}

class Circle extends Shape {
 void draw() {
 System.out.println("Drawing circle");
 }
}

public class Main {
 public static void main(String[] args) {
 Shape s = new Circle();
 s.draw();
 }

}

Output

Drawing circle

3.6 Dynamic Binding

Definition

Dynamic binding means method call is resolved at runtime, not compile time.
 It occurs only with:

• Inheritance
• Method overriding

Syntax

Parent obj = new Child();

Program

class A {
 void show() {
 System.out.println("Class A");
 }
}

class B extends A {
 void show() {
 System.out.println("Class B");
 }
}

public class Main {
 public static void main(String[] args) {
 A obj = new B();
 obj.show();
 }
}

Output

Class B

3.7 final Keyword

Definition

final keyword is used to restrict modification.
 It can be applied to:

• Variable → value cannot change
• Method → cannot be overridden
• Class → cannot be inherited

Syntax

final int x = 10;
final void method() {}
final class ClassName {}

Program

class Parent {
 final void show() {
 System.out.println("Final method");
 }
}

class Child extends Parent {
 // cannot override show()
}

public class Main {
 public static void main(String[] args) {
 Parent p = new Parent();
 p.show();
 }
}

Output

Final method

3.8 Abstract Classes

Definition

An abstract class is a class that cannot be instantiated and may contain abstract and non-abstract
methods.
 It is used to provide a base structure for child classes.

Syntax

abstract class ClassName {
 abstract void method();
}

Program

abstract class Animal {
 abstract void sound();

 void sleep() {
 System.out.println("Animal sleeps");
 }
}

class Dog extends Animal {
 void sound() {
 System.out.println("Dog barks");
 }
}

public class Main {
 public static void main(String[] args) {
 Dog d = new Dog();
 d.sound();
 d.sleep();
 }
}

Output

Dog barks
Animal sleeps

3.9 Access Specifiers

Definition

Access specifiers control where variables and methods can be accessed.
 They help in data security and encapsulation.

Specifier Access
public Everywhere
protected Same package + subclass
default Same package
private Same class only

Program

class Test {
 public int a = 10;
 private int b = 20;

 void show() {
 System.out.println(a);
 System.out.println(b);
 }
}

public class Main {
 public static void main(String[] args) {
 Test t = new Test();
 t.show();
 }
}

Output

10
20

3.10 Interfaces

Definition

An interface is a collection of abstract methods.
 It supports:

• Multiple inheritance
• 100% abstraction
• Loose coupling

Syntax

interface InterfaceName {
 void method();
}

Program

interface Vehicle {
 void start();
}

class Car implements Vehicle {
 public void start() {
 System.out.println("Car starts");
 }
}

public class Main {
 public static void main(String[] args) {
 Car c = new Car();
 c.start();
 }
}

Output

Car starts

	Unit 3: Inheritance and Interfaces
	3.1 Inheritance Basics
	Definition
	Syntax
	Program
	Output

	3.2 Inheritance and Constructors
	Definition
	Syntax
	Program
	Output

	3.3 super Keyword
	Definition
	Syntax
	Program
	Output

	3.4 Method Overriding
	Definition
	Syntax
	Program
	Output

	3.5 Polymorphism
	Definition
	Syntax
	Program
	Output

	3.6 Dynamic Binding
	Definition
	Syntax
	Program
	Output

	3.7 final Keyword
	Definition
	Syntax
	Program
	Output

	3.8 Abstract Classes
	Definition
	Syntax
	Program
	Output

	3.9 Access Specifiers
	Definition
	Program
	Output

	3.10 Interfaces
	Definition
	Syntax
	Program
	Output

