
Unit 2: Introducing Classes, Objects and
Methods

2.1 Class Fundamentals

Definition

A class is a blueprint or template used to create objects.
 It contains:

• Data members (variables)
• Member functions (methods)

Features

• Logical representation of an object
• Improves code organization
• Supports encapsulation

Syntax

class ClassName {
 // variables
 // methods
}

Program

class Student {
 int id;
 String name;

 void show() {
 System.out.println(id + " " + name);
 }
}

public class Main {
 public static void main(String[] args) {
 Student s = new Student();
 s.id = 101;
 s.name = "Ravi";
 s.show();
 }
}

Output

101 Ravi

2.2 Object Creation

Definition

An object is a real-world entity created from a class.
 It represents actual memory allocation.

Features

• Each object has its own data
• Created using new keyword
• Can access class members

Syntax

ClassName obj = new ClassName();

Program

class Box {
 int length = 10;

 void display() {
 System.out.println(length);
 }
}

public class Main {
 public static void main(String[] args) {
 Box b = new Box();
 b.display();

}

}

Output

10

2.3 Methods

Definition

A method is a block of code that performs a specific task.
 It is used to reuse code and reduce complexity.

Types

• Predefined methods
• User-defined methods

Syntax

returnType methodName(parameters) {
 // code
}

Program

class MethodDemo {
 void add(int a, int b) {
 System.out.println(a + b);
 }

 public static void main(String[] args) {
 MethodDemo m = new MethodDemo();
 m.add(10, 20);
 }
}

Output

30

2.4 Command Line Arguments

Definition

Command line arguments are values passed to the program at runtime.
 They are stored in the args[] array of main() method.

Features

• No need for user input during execution
• Useful for dynamic data

Syntax

public static void main(String[] args)

Program

class CmdDemo {
 public static void main(String[] args) {
 System.out.println(args[0]);
 }
}

Output

(If run as: java CmdDemo Hello)

Hello

2.5 Constructors

Definition

A constructor is a special method used to initialize objects.
 It has:

• Same name as class
• No return type

Features

• Called automatically
• Used for initialization
• Can be overloaded

Syntax

ClassName() {
}

Program

class Demo {
 Demo() {
 System.out.println("Constructor called");
 }

 public static void main(String[] args) {
 Demo d = new Demo();
 }
}

Output

Constructor called

2.6 Garbage Collection

Definition

Garbage Collection is the process of automatically removing unused objects from memory.

Features

• Done by JVM
• Improves memory management
• Programmer does not delete objects

Program

class Test {
 public static void main(String[] args) {
 Test t1 = new Test();
 t1 = null; // eligible for garbage collection
 System.out.println("Object created");
 }
}

Output

Object created

2.7 this Keyword

Definition

this keyword refers to the current object.

Uses

• Differentiate instance variables and local variables
• Call current class methods
• Call current class constructor

Syntax

this.variable = variable;

Program

class Student {
 int id;

 Student(int id) {
 this.id = id;
 }

 void show() {
 System.out.println(id);
 }

 public static void main(String[] args) {
 Student s = new Student(10);
 s.show();
 }
}

Output

10

2.8 Static Fields and Methods

Definition

Static members belong to the class, not to objects.

Features

• Memory allocated once
• Accessed using class name
• Shared among all objects

Syntax

static int x;
static void method() {}

Program

class StaticDemo {
 static int count = 0;

 StaticDemo() {
 count++;
 }
 public static void main(String[] args) {
 new StaticDemo();
 new StaticDemo();
 System.out.println(count);
 }
}

Output

2

2.9 Nested and Inner Classes

Definition

A class defined inside another class is called a nested class.
 If it is non-static, it is called an inner class.

Features

• Improves code readability
• Used for logical grouping
• Access outer class members

Syntax

class Outer {
 class Inner {
 }
}

Program

class Outer {
 int x = 10;

 class Inner {
 void show() {
 System.out.println(x);
 }
 }
 public static void main(String[] args) {
 Outer o = new Outer();
 Outer.Inner i = o.new Inner();
 i.show();
 }
}

Output

10

2.10 Variable Length Arguments (Var-args)

Definition

Variable length arguments allow a method to accept any number of arguments.

Features

• Introduced in Java 5

• Reduces method overloading
• Internally treated as array

Syntax

methodName(type... args)

Program

class VarArgsDemo {
 static void sum(int... a) {
 int total = 0;
 for (int x : a) {
 total += x;
 }
 System.out.println(total);
 }
 public static void main(String[] args) {
 sum(10, 20);
 sum(1, 2, 3);
 }
}

Output

30
6

	Unit 2: Introducing Classes, Objects and Methods
	2.1 Class Fundamentals
	Definition
	Features
	Syntax
	Output

	2.2 Object Creation
	Definition
	Features
	Syntax
	Program
	Output

	2.3 Methods
	Definition
	Types
	Syntax
	Program
	Output

	2.4 Command Line Arguments
	Definition
	Features
	Syntax
	Program
	Output

	2.5 Constructors
	Definition
	Features
	Syntax
	Program
	Output

	2.6 Garbage Collection
	Definition
	Program
	Output

	2.7 this Keyword
	Definition
	Uses
	Syntax
	Program
	Output

	2.8 Static Fields and Methods
	Definition
	Features
	Syntax
	Program
	Output
	2

	2.9 Nested and Inner Classes
	Definition
	Features
	Syntax
	Program
	Output

	2.10 Variable Length Arguments (Var-args)
	Definition
	Features
	Syntax
	Program
	class VarArgsDemo { static void sum(int... a) { int total = 0; for (int x : a) { total += x; } System.out.println(total); } public static void main(String[] args) { sum(10, 20); s...
	Output

