
Unit 2: Introducing Classes, Objects and 
Methods 

2.1 Class Fundamentals 

Definition 

A class is a blueprint or template used to create objects. 
 It contains: 

• Data members (variables) 
• Member functions (methods) 

Features 

• Logical representation of an object 
• Improves code organization 
• Supports encapsulation 

Syntax 

class ClassName { 
    // variables 
    // methods 
} 

Program 

class Student { 
    int id; 
    String name; 
 
    void show() { 
        System.out.println(id + " " + name); 
    } 
} 
 
public class Main { 
    public static void main(String[] args) { 
        Student s = new Student(); 
        s.id = 101; 
        s.name = "Ravi"; 
        s.show(); 
    } 
} 
 



Output 

101 Ravi 

 

2.2 Object Creation 

Definition 

An object is a real-world entity created from a class. 
 It represents actual memory allocation. 

Features 

• Each object has its own data 
• Created using new keyword 
• Can access class members 

Syntax 

ClassName obj = new ClassName(); 
 

Program 

class Box { 
    int length = 10; 
 
  void display() { 
        System.out.println(length); 
    } 
} 
 
public class Main { 
    public static void main(String[] args) { 
        Box b = new Box(); 
        b.display(); 

} 

} 
 

Output 

10 



2.3 Methods 

Definition 

A method is a block of code that performs a specific task. 
 It is used to reuse code and reduce complexity. 

Types 

• Predefined methods 
• User-defined methods 

Syntax 

returnType methodName(parameters) { 
    // code 
} 
 

Program 

class MethodDemo { 
    void add(int a, int b) { 
        System.out.println(a + b); 
    } 
 
    public static void main(String[] args) { 
        MethodDemo m = new MethodDemo(); 
        m.add(10, 20); 
    } 
} 
 

Output 

30 

2.4 Command Line Arguments 

Definition 

Command line arguments are values passed to the program at runtime. 
 They are stored in the args[] array of main() method. 



Features 

• No need for user input during execution 
• Useful for dynamic data 

Syntax 

public static void main(String[] args) 
 

Program 

class CmdDemo { 
    public static void main(String[] args) { 
        System.out.println(args[0]); 
    } 
} 
 

Output 

(If run as: java CmdDemo Hello) 

Hello 

2.5 Constructors 

Definition 

A constructor is a special method used to initialize objects. 
 It has: 

• Same name as class 
• No return type 

Features 

• Called automatically 
• Used for initialization 
• Can be overloaded 

Syntax 

ClassName() { 
} 
 



Program 

class Demo { 
    Demo() { 
        System.out.println("Constructor called"); 
    } 
 
    public static void main(String[] args) { 
        Demo d = new Demo(); 
    } 
} 

Output 

Constructor called 
 

 

2.6 Garbage Collection 

Definition 

Garbage Collection is the process of automatically removing unused objects from memory. 

Features 

• Done by JVM 
• Improves memory management 
• Programmer does not delete objects 

Program 

class Test { 
    public static void main(String[] args) { 
        Test t1 = new Test(); 
        t1 = null;  // eligible for garbage collection 
        System.out.println("Object created"); 
    } 
} 
 

Output 

Object created 
 



2.7 this Keyword 

Definition 

this keyword refers to the current object. 

Uses 

• Differentiate instance variables and local variables 
• Call current class methods 
• Call current class constructor 

Syntax 

this.variable = variable; 

Program 

class Student { 
    int id; 
 
    Student(int id) { 
        this.id = id; 
    } 
 
    void show() { 
        System.out.println(id); 
    } 
 
    public static void main(String[] args) { 
        Student s = new Student(10); 
        s.show(); 
    } 
} 
 

Output 

10 
 

 



2.8 Static Fields and Methods 

Definition 

Static members belong to the class, not to objects. 

Features 

• Memory allocated once 
• Accessed using class name 
• Shared among all objects 

Syntax 

static int x; 
static void method() {} 
 

Program 

class StaticDemo { 
    static int count = 0; 
 
    StaticDemo() { 
        count++; 
    } 
    public static void main(String[] args) { 
        new StaticDemo(); 
        new StaticDemo(); 
        System.out.println(count); 
    } 
} 
 

Output 

2 

2.9 Nested and Inner Classes 

Definition 

A class defined inside another class is called a nested class. 
 If it is non-static, it is called an inner class. 



Features 

• Improves code readability 
• Used for logical grouping 
• Access outer class members 

Syntax 

class Outer { 
    class Inner { 
    } 
} 

Program 

class Outer { 
    int x = 10; 
 
    class Inner { 
        void show() { 
            System.out.println(x); 
        } 
    } 
    public static void main(String[] args) { 
        Outer o = new Outer(); 
        Outer.Inner i = o.new Inner(); 
        i.show(); 
    } 
} 
 

Output 

10 
 

 

2.10 Variable Length Arguments (Var-args) 

Definition 

Variable length arguments allow a method to accept any number of arguments. 

Features 

• Introduced in Java 5 



• Reduces method overloading 
• Internally treated as array 

Syntax 

methodName(type... args) 
 

Program 

class VarArgsDemo { 
    static void sum(int... a) { 
        int total = 0; 
        for (int x : a) { 
            total += x; 
        } 
        System.out.println(total); 
    } 
    public static void main(String[] args) { 
        sum(10, 20); 
        sum(1, 2, 3); 
    } 
} 
 

Output 

30 
6 
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