
Unit 4: Exception Handling and
Multithreading

4.1 The Exception Hierarchy
Definition
An exception is an abnormal condition that occurs during program execution and
interrupts the normal flow.

Java follows a class hierarchy for exceptions.

Hierarchy (Main Levels)
Object

Throwable

Exception (checked exceptions)
Error (serious system errors)

Features
All exceptions are objects
Exception can be handled
Error usually cannot be handled

Example Program
class ExceptionDemo {
 public static void main(String[] args) {
 int a = 10 / 0;
 System.out.println(a);
 }
}

Output
Exception in thread "main" java.lang.ArithmeticException

4.2 Exception Handling Fundamentals
Definition
Exception handling is a mechanism to handle runtime errors so that the program
continues execution.

Advantages
Prevents abnormal termination
Maintains normal program flow
Separates error-handling code

Basic Syntax
try {
 // risky code
} catch (Exception e) {
 // handling code
}

Program
class HandleDemo {
 public static void main(String[] args) {
 try {
 int a = 10 / 0;
 } catch (ArithmeticException e) {
 System.out.println("Error handled");
 }
 System.out.println("Program continues");
 }
}

Output
Error handled
Program continues

4.3 Throwing, Re-throwing and Catching Exceptions
Definition

Throwing: Manually creating an exception using throw

Catching: Handling exception using catch
Re-throwing: Throwing the same exception again

Features
Used for custom error conditions
Improves program reliability

Program
class ThrowDemo {
 static void check(int age) {
 if (age < 18) {
 throw new ArithmeticException("Not eligible");
 } else {
 System.out.println("Eligible");
 }
 }

 public static void main(String[] args) {
 try {
 check(15);
 } catch (ArithmeticException e) {
 System.out.println(e.getMessage());
 }
 }
}

Output
Not eligible

4.4 try, catch, throw, throws, and finally Keywords
Definitions

try → contains risky code
catch → handles exception
throw → explicitly throws exception
throws → declares exception
finally → always executes

Syntax
try {
} catch (Exception e) {
} finally {
}

Program
class FinallyDemo {
 static void divide() throws ArithmeticException {
 int a = 10 / 0;
 }

 public static void main(String[] args) {
 try {
 divide();
 } catch (Exception e) {
 System.out.println("Exception caught");
 } finally {
 System.out.println("Finally block executed");
 }
 }
}

Output
Exception caught
Finally block executed

4.5 Multithreading Fundamentals
Definition
Multithreading is the ability of a program to run multiple threads simultaneously.

Features
Improves CPU utilization
Faster execution
Each thread runs independently

Thread Life Cycle
New
Runnable
Running
Blocked
Terminated

Example Program
class MyThread extends Thread {
 public void run() {
 System.out.println("Thread is running");
 }

 public static void main(String[] args) {
 MyThread t = new MyThread();
 t.start();
 }
}

Output
Thread is running

4.6 Thread Class and Runnable Interface
Definition
Java provides two ways to create threads:

Extending Thread class
Implementing Runnable interface

Comparison
Thread → cannot extend another class
Runnable → supports multiple inheritance

Using Thread Class
class ThreadDemo extends Thread {
 public void run() {
 System.out.println("Thread using Thread class");

 }

 public static void main(String[] args) {
 ThreadDemo t = new ThreadDemo();
 t.start();
 }
}

Output
Thread using Thread class

Using Runnable Interface
class RunnableDemo implements Runnable {
 public void run() {
 System.out.println("Thread using Runnable");
 }

 public static void main(String[] args) {
 RunnableDemo r = new RunnableDemo();
 Thread t = new Thread(r);
 t.start();
 }
}

Output
Thread using Runnable

	Unit 4: Exception Handling and Multithreading
	4.1 The Exception Hierarchy
	Definition
	Hierarchy (Main Levels)
	Features
	Example Program
	Output

	4.2 Exception Handling Fundamentals
	Definition
	Advantages
	Basic Syntax
	Program
	Output

	4.3 Throwing, Re-throwing and Catching Exceptions
	Definition
	Features
	Program
	Output

	4.4 try, catch, throw, throws, and finally Keywords
	Definitions
	Syntax
	Program
	Output

	4.5 Multithreading Fundamentals
	Definition
	Features
	Thread Life Cycle
	Example Program
	Output

	4.6 Thread Class and Runnable Interface
	Definition
	Comparison
	Using Thread Class
	Output
	Using Runnable Interface
	Output

