

OBJECTIVES:

 To learn the fundamentals of Operating Systems.

 To learn the mechanisms of OS to handle processes and threads and their communication

 To learn the mechanisms involved in memory management in contemporary OS

 To gain knowledge on distributed operating system concepts that includes architecture,

 Mutual exclusion algorithms, deadlock detection algorithms and agreement protocols

 To know the components and management aspects of concurrency management

UNIT-I

Introduction: Concept of Operating Systems, Generations of Operating systems, Types of

Operating Systems, OS Services, System Calls, Structure of an OS - Layered, Monolithic,

Microkernel Operating Systems, Concept of Virtual Machine. Case study on UNIX and

WINDOWS Operating System.

Processes: Definition, Process Relationship, Different states of a Process, Process State

transitions, Process Control Block (PCB), Context switching

Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of

Multithreads.

UNIT-II

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling

criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time;

Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor

scheduling: Real Time scheduling: RM and EDF.

Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion,Hardware

Solution, Strict Alternation, Peterson’s Solution, The Producer/Consumer Problem, Semaphores,

Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader’s & Writer

Problem, Dinning Philosopher Problem etc.

UNIT-III

Memory Management: Basic concept, Logical and Physical address map, Memory allocation:

Contiguous Memory allocation – Fixed and variable partition–Internal and External

fragmentation and Compaction; Paging: Principle of operation – Page allocation – Hardware

support for paging, protection and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of

reference, Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement

algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU)

and Least Recently used (LRU).

 OPERATING SYSTEMS

BICTE Operating System Notes

Notes By Rajesh parajuli

UNIT-IV

File Management: Concept of File, Access methods, File types, File operation, Directory

structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space

management (bit vector, linked list, grouping), directory implementation (linear list, hash table),

efficiency and performance.

I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O

Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software.

UNIT-V

Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention,

Deadlock Avoidance: Banker’s algorithm, Deadlock detection and Recovery.

Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk

reliability, Disk formatting, Boot-block, Bad blocks.

TEXT BOOKS:

1. Operating System Concepts Essentials, 9th Edition by AviSilberschatz, Peter

Galvin,Greg Gagne, Wiley Asia Student Edition.

2. Operating Systems: Internals and Design Principles, 5th Edition, William

Stallings,Prentice Hall of India.

REFERENCE BOOKS:

1. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley,

Irwin Publishing

2. Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-

Wesley

3. Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hallof

India

4. Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly

and Associates

OUTCOMES:

At the end of the course the students are able to:

 Create processes and threads.

 Develop algorithms for process scheduling for a given specification of CPU

utilization, Throughput, Turnaround Time, Waiting Time, Response Time.

 For a given specification of memory organization develop the techniques for optimally

allocating memory to processes by increasing memory utilization and for improving

the access time.

 Design and implement file management system.

 For a given I/O devices and OS (specify) develop the I/O management functions in OS

as part of a uniform device abstraction by performing operations for synchronization

between CPU and I/O controllers.

INDEX
UNIT

NO
TOPIC PAGE NO

I

Introduction

Operating System concepts 1-11

Types of Operating Systems 11-18

Operating services, System Calls 18-25

Structure of OS, Virtual machines 26-31

Process Concepts 32-34

Thread Concepts 34-38

II

Process Scheduling

Process Scheduling concepts 39-40

Pre-emptive and Non pre-emptive scheduling

algorithms
41-48

Multiprocessor scheduling 48-49

Real time scheduling 49-52

Inter-process Communication

Critical Section problem 52-57

Classical IPC Problems 57-65

III
Memory Management 66-82

Virtual Memory 82-89

IV
File System Management 90-105

I/O Hardware 105-110

V
Deadlocks 111-119

Mass Storage Structure 120-129

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

1

UNIT-I

Operating System Introduction: Operating Systems Objectives and functions, Computer System

Architecture, OS Structure, OS Operations, Evolution of Operating Systems - Simple Batch, Multi

programmed, time shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, Special -

Purpose Systems, Operating System services, user OS Interface, System Calls, Types of System Calls,

System Programs, Operating System Design and Implementation, OS Structure, Virtual machines

parajulirajesh.com.np

Type your text

 OPERATING SYSTEMS NOTES

2

parajulirajesh.com.np

 OPERATING SYSTEMS NOTES

3

Operating system performs the following functions:

1. Booting

Booting is a process of starting the computer operating system starts the computer to work.

It checks the computer and makes it ready to work.

2. Memory Management

It is also an important function of operating system. The memory cannot be managed

without operating system. Different programs and data execute in memory at one time. if

there is no operating system, the programs may mix with each other. The system will not

work properly.

3. Loading and Execution

A program is loaded in the memory before it can be executed. Operating system provides

the facility to load programs in memory easily and then execute it.

4. Data security

Data is an important part of computer system. The operating system protects the data stored on

the computer from illegal use, modification or deletion.

5. Disk Management

Operating system manages the disk space. It manages the stored files and folders in a proper way.

6. Process Management

CPU can perform one task at one time. if there are many tasks, operating system decides which

task should get the CPU.

7. Device Controlling

operating system also controls all devices attached to computer. The hardware devices

are controlled with the help of small software called device drivers..

8. Providing interface

It is used in order that user interface acts with a computer mutually. User interface controls

how you input data and instruction and how information is displayed on screen. The operating

system offers two types of the interface to the user:

1. Graphical-line interface: It interacts with of visual environment to communicate

with the computer. It uses windows, icons, menus and other graphical objects to issues

commands.

2. Command-line interface:it provides an interface to communicate with the computer by

typing commands.

parajulirajesh.com.np

 OPERATING SYSTEMS NOTES

4

Computer System Architecture

Computer system can be divided into four components Har dwar e – provides

basic computing resources

CPU, memory, I/O devices, Operat ing system

Controls and coordinates use of hardware among various applications and users

Application programs – define the ways in which the system resources are used to solve the computing

problems of the users

Word processors, compilers, web browsers, database systems, video

games Users

People, machines, other computers Four

Components of a Computer System

Computer architecture means construction/design of a computer. A computer system may be

organized in different ways. Some computer systems have single processor and others have

multiprocessors. So based on the processors used in computer systems, they are categorized

into the following systems.

1. Single-processor system

2. Multiprocessor system

3. Clustered Systems:

1. Single-Processor Systems:

Some computers use only one processor such as microcomputers (or personal computers PCs).

On a single-processor system, there is only one CPU that performs all the activities in the

computer system. However, most of these systems have other special purpose processors, such

as I/O processors that move data quickly among different components of the computers. These

processors execute only a limited system programs and do not run the user program. Sometimes

parajulirajesh.com.np

 OPERATING SYSTEMS NOTES

5

they are managed by the operating system. Similarly, PCs contain a special purpose

microprocessor in the keyboard, which converts the keystrokes into computer codes to be sent to

the CPU. The use of special purpose microprocessors is common in microcomputer. But it does

not mean that this system is multiprocessor. A system that has only one general-purpose CPU,

is considered as single- processor system.

2. Multiprocessor Systems:

In multiprocessor system, two or more processors work together. In this system, multiple programs

(more than one program) are executed on different processors at the same time. This type of

processing is known as multiprocessing. Some operating systems have features of multiprocessing.

UNIX is an example of multiprocessing operating system. Some versions of Microsoft Windows

also support multiprocessing.

Multiprocessor system is also known as parallel system. Mostly the processors of

multiprocessor system share the common system bus, clock, memory and peripheral devices.

This system is very fast in data processing.

Types of Multiprocessor Systems:

The multiprocessor systems are further divided into two

types; (i). Asymmetric multiprocessing system

(ii). Symmetric multiprocessing system

(i) Asymmetric Multiprocessing System(AMS):

The multiprocessing system, in which each processor is assigned a specific task, is known as

Asymmetric Multiprocessing System. For example, one processor is dedicated for handling

user's requests, one processor is dedicated for running application program, and one processor

is dedicated for running image processing and so on. In this system, one processor works as

master processor, while other processors work as slave processors. The master processor

controls the operations of system. It also schedules and distributes tasks among the slave

processors. The slave processors perform the predefined tasks.

(ii) Symmetric Multiprocessing System(SMP):

The multiprocessing system, in which multiple processors work together on the same task, is

known as Symmetric Multiprocessing System. In this system, each processor can perform all

types of tasks. All processors are treated equally and no master-slave relationship exists

between the processors.

 OPERATING SYSTEMS NOTES

6

For example, different processors in the system can communicate with each other. Similarly, an

I/O can be processed on any processor. However, I/O must be controlled to ensure that the data

reaches the appropriate processor. Because all the processors share the same memory, so the

input data given to the processors and their results must be separately controlled. Today all

modern operating systems including Windows and Linux provide support for SMP.

It must be noted that in the same computer system, the asymmetric multiprocessing and

symmetric multiprocessing technique can be used through different operating systems.

A Dual-Core Design

3. Clustered Systems:

Clustered system is another form of multiprocessor system. This system also contains multiple

processors but it differs from multiprocessor system. The clustered system consists of two or

more individual systems that are coupled together. In clustered system, individual systems (or

clustered computers) share the same storage and are linked together ,via Local Area Network

(LAN).

A layer of cluster software runs on the cluster nodes. Each node can monitor one or more of

the other nodes over the LAN. If the monitored machine fails due to some technical fault (or

due to other reason), the monitoring machine can take ownership of its storage. The

monitoring machine can also restart the applications that were running on the failed machine.

The users of the applications see only an interruption of service.

Types of Clustered Systems:

Like multiprocessor systems, clustered system can also be of two

types (i). Asymmetric Clustered System

(ii). Symmetric Clustered System

(i). Asymmetric Clustered System:

In asymmetric clustered system, one machine is in hot-standby mode while the other

http://www.selfgrowth.com/software.html

 OPERATING SYSTEMS NOTES

7

machine is running the application. The hot-standby host machine does nothing. It only

monitors the active server. If the server fails, the hot-standby machine becomes the active

server.

(ii). Symmetric Clustered System:

In symmetric clustered system, multiple hosts (machines) run the applications. They also

monitor each other. This mode is more efficient than asymmetric system, because it uses all

the available hardware. This mode is used only if more than one application be available to

run.

Operating System – Structure

Operating System Structure

Multiprogramming needed for efficiency

Single user cannot keep CPU and I/O devices busy at all times

Multiprogramming organizes jobs (code and data) so CPU always has one to

Execute A subset of total jobs in system is kept in memory

 OPERATING SYSTEMS NOTES

8

 OPERATING SYSTEMS NOTES

9

2) Multitasking

 OPERATING SYSTEMS NOTES

10

Operating-system Operations

1) Dual-Mode Operation·

In order to ensure the proper execution of the operating system, we must be able to dist inguish

between the execution of operating-system code and user defined code. The approach taken by

most computer systems is to provide hardware support that allows us to differentiate among

various modes of execution.

At the very least we need two separate modes of operation.user mode and kernel mode.

A bit, called the mode bit is added to the hardware of the computer to indicate the current mode:

kernel (0) or user (1).with the mode bit we are able to distinguish between a task that is

executed on behalf of the operating system and one that is executed on behalf of the user, When

the computer system is executing on behalf of a user application, the system is in user mode.

However, when a user application requests a service from the operating system (via a.. system

call), it must transition from user to kernel mode to fulfill the request.

At system boot time, the hardware starts in kernel mode. The operating system is then loaded

and starts user applications in user mode. Whenever a trap or interrupt occurs, the hardware

switches from user mode to kernel mode (that is, changes the state of the mode bit to 0). Thus,

whenever the operating system gains control of the computer, it is in kernel mode. The system

always switches to user mode (by setting the mode bit to 1) before passing control to a user

program.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

11

The dual mode of operation provides us with the means for protecting the operating system

from errant users-and errant users from one another. We accomplish this protection by

designating some of the machine instructions that may cause harm as privileged instructions.

the hardware allows privileged instructions to be executed only in kernel mode. If an attempt is

made to execute a privileged instruction in user mode, the hardware does not execute the

instruction but rather treats it as illegal and traps it to the operating system. The instruction to

switch to kernel mode is an example of a privileged instruction. Some other examples include

I/0 control timer management and interrupt management.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

12

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

13

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

14

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

15

Personal-Computer Systems(PCs)

A personal computer (PC) is a small, relatively inexpensive computer designed for an

individual user. In price, personal computers range anywhere from a few hundred dollars to

thousands of dollars. All are based on the microprocessor technology that enables

manufacturers to put an entire CPU on one chip.

At home, the most popular use for personal computers is for playing games. Businesses

use personal computers for word processing, accounting, desktop publishing, and for

running spreadsheet and database management applications.

http://www.webopedia.com/TERM/C/computer.html
http://www.webopedia.com/TERM/U/user.html
http://www.webopedia.com/TERM/M/microprocessor.html
http://www.webopedia.com/TERM/C/CPU.html
http://www.webopedia.com/TERM/C/chip.html
http://www.webopedia.com/TERM/W/word_processing.html
http://www.webopedia.com/TERM/D/desktop_publishing.html
http://www.webopedia.com/TERM/R/run.html
http://www.webopedia.com/TERM/R/run.html
http://www.webopedia.com/TERM/D/database_management_system_DBMS.html
http://www.webopedia.com/TERM/D/database_management_system_DBMS.html

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

16

Special purpose systems

a) Real-Time EmbeddedSystems

These devices are found everywhere, from car engines and manufacturing robots to DVDs

and microwave ovens. They tend to have very specific tasks.

They have little or no user interface, preferring to spend their time monitoring and

managing hardware devices, such as automobile engines and robotic arms.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

17

b) Multimedia Systems

Most operating systems are designed to handle conventional data such as text files, programs,

word-processing documents, and spreadsheets. However, a recent trend in technology is the

incorporation of multimedia data into computer systems. Multimedia data consist of audio

and video files as well as conventional files. These data differ from conventional data in that

multimedia data-such as frames of video-must be delivered (streamed) according to certain

time restrictions (for example, 30 frames per second). Multimedia describes a wide range of

applications in popular use today. These include audio files such as MP3, DVD movies,

video conferencing, and short video clips of movie previews or news stories downloaded

over the Internet. Multimedia applications may also include live webcasts (broadcasting over

the World Wide Web)

c) Hand held Systems

Handheld Systems include personal digital assistants (PDAs, cellular telephones. Developers of

handheld systems and applications face many challenges, most of which are due to the limited

size of such devices. For example, a PDA is typically about 5 inches in height and 3 inches in

width, and it weighs less than one-half pound. Because of their size, most handheld devices

have small amounts of memory, slow processors, and small display screens.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

18

Operating System Services

 One set of operating-system services provides functions that are helpful to the user

Communications – Processes may exchange information, on the same computer or between computers

over a network Communications may be via shared memory or through message passing (packets moved

by the OS)

 Error detection – OS needs to be constantly aware of possible errors May occur in the CPU and

memory hardware, in I/O devices, in user program For each type of error, OS should take the appropriate

action to ensure correct and consistent computing Debugging facilities can greatly enhance the user’s

and programmer’s abilities to efficiently use the system

 Another set of OS functions exists for ensuring the efficient operation of the system itself via resource

Sharing

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

19

 Resource allocation - When multiple users or multiple jobs running concurrently, resources must

be allocated to each of them

 Many types of resources - Some (such as CPU cycles, main memory, and file storage) may have special

allocation code, others (such as I/O devices) may have general request and release code

Accounting - To keep track of which users use how much and what kinds of computer resources

Protection and security - The owners of information stored in a multiuser or networked computer

system may want to control use of that information, concurrent processes should not interfere with each

other

Protection involves ensuring that all access to system resources is controlled

Security of the system from outsiders requires user authentication, extends to defending external I/O

devices from invalid access attempts

 If a system is to be protected and secure, precautions must be instituted throughout it. A chain is only as

strong as its weakest link.

User Operating System Interface - CLI

 Command Line Interface (CLI) or command interpreter allows direct command entry

Sometimes implemented in kernel, sometimes by systems program

sometimes multiple flavors implemented – shells

Primarily fetches a command from user and executes it

User Operating System Interface - GUI

User-friendly desktop metaphor interface

Usually mouse, keyboard, and monitor Icons

represent files, programs, actions, etc

Various mouse buttons over objects in the interface cause various actions (provide information,

options, execute function, open directory (known as a folder)

Invented at Xerox PARC

Many systems now include both CLI and GUI

interfaces Microsoft Windows is GUI with CLI

“command” shell

Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath and shells

available Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

System Calls

Programming interface to the services provided by the OS

Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application Program Interface (API) rather than

direct system call usenThree most common APIs are Win32 API for Windows, POSIX API for POSIX-

based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the

Java virtual machine (JVM)

 Why use APIs rather than system calls?

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

20

Example of System Calls

Example of Standard API

Consider the ReadFile() function in the

Win32 API—a function for reading from a file

 A description of the parameters passed to ReadFile() HANDLE file—the file to be read

LPVOID buffer—a buffer where the data will be read into and written

from DWORD bytesToRead—the number of bytes to be read into the

buffer LPDWORD bytesRead—the number of bytes read during the

last read LPOVERLAPPED ovl—indicates if overlapped I/O is being

used

System Call Implementation

Typically, a number associated with each system call

System-call interface maintains a table indexed according to these Numbers

The system call interface invokes intended system call in OS kernel and returns status of the system

call and any return values

The caller need know nothing about how the system call is

implemented Just needs to obey API and understand what OS will

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

21

do as a result call Most details of OS interface hidden from

programmer by API

Managed by run-time support library (set of functions built into libraries included with compiler)

API – System Call – OS Relationship

System Call Parameter Passing

Often, more information is required than simply identity of desired system

call Exact type and amount of information vary according to OS and call

Three general methods used to pass parameters to the

OS Simplest: pass the parameters in registers

In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory, and address of block passed as a parameter

in a register

This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program and popped off the stack by the operating

system

 Block and stack methods do not limit the number or length of parameters being passed

Standard C Library Example

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

22

Parameter Passing via Table

Types of System Calls

1. Process control

2. File management

3. Device management

4. Information maintenance

5. Communications

 Process control

A running needs to halt its execution either normally or abnormally.

If a system call is made to terminate the running program, a dump of memory is sometimes

taken and an error message generated which can be diagnosed by a debugger

o end, abort

o load, execute

o create process, terminate process

o get process attributes, set process attributes

o wait for time

o wait event, signal event

o allocate and free memory

 File management

 OS provides an API to make these system calls for managing files

o create file, delete file

o open, close file

o read, write, reposition

o get and set file attributes

 Device management

Process requires several resources to execute, if these resources are available, they will be

granted and control retuned to user process. Some are physical such as video card and other

such as file. User program request the device and release when finished

o request device, release device

o read, write, reposition

o get device attributes, set device attributes

o logically attach or detach devices

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

23

 Information maintenance

 System calls exist purely for transferring information between the user

program and OS. It can return information about the system, such as the number of current users,

the version number of the operating system, the amount of free memory or disk space and so on.

o get time or date, set time or date

o get system data, set system data

o get and set process, file, or device attributes

 Communications

 Two common models of communication

 Message-passing model, information is exchanged through an inter process-

communication facility provided by the OS.

Shared-memory model, processes use map memory system calls to gain access to regions of

memory owned by other processes.

o create, delete communication connection

o send, receive messages

o transfer status information

o attach and detach remote devices

Examples of Windows and Unix System Calls

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

24

 MS-DOS execution

(a) At system startup (b) running a

program FreeBSD Running Multiple Programs

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

25

System Programs

System programs provide a convenient environment for program development and execution. The can

be divided into:

File manipulation

Status information

File modification

Programming language support

Program loading and execution

Communications

Application programs

Most users’ view of the operation system is defined by system programs, not the actual

system calls provide a convenient environment for program development and execution

Some of them are simply user interfaces to system calls; others are considerably more complex

File management - Create, delete, copy, rename, print, dump, list, and generally manipulate files and

directories

 Status information

Some ask the system for info - date, time, amount of available memory, disk space, number of users

Others provide detailed performance, logging, and debugging information

Typically, these programs format and print the output to the terminal or other output devices

Some systems implement a registry - used to store and retrieve configuration information

 File modification

Text editors to create and modify files

Special commands to search contents of files or perform transformations of the text

Programming-language support - Compilers, assemblers, debuggers and interpreters sometimes

provided

 Program loading and execution- Absolute loaders, relocatable loaders, linkage editors, and overlay-

loaders, debugging systems for higher-level and machine language

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

26

 Communications - Provide the mechanism for creating virtual connections among processes, users, and

computer systems

 Allow users to send messages to one another’s screens, browse web pages, send electronic-mail

messages, log in remotely, transfer files from one machine to another

Operating System Design and Implementation

Design and Implementation of OS not “solvable”, but some approaches have proven successful

Internal structure of different Operating Systems can vary widely

Start by defining goals and specifications Affected by

choice of hardware, type of system User goals and

System goals

User goals – operating system should be convenient to use, easy to learn, reliable, safe, and fast

System goals – operating system should be easy to design, implement, and maintain, as well as flexible,

reliable, error-free, and efficient

Important principle to separate

Policy: What will be done?

Mechanism: How to do it?

Mechanisms determine how to do something, policies decide what will be done

The separation of policy from mechanism is a very important principle, it allows maximum flexibility if

policy decisions are to be changed later

Simple Structure

MS-DOS – written to provide the most functionality in the least space Not divided into

modules

Although MS-DOS has some structure, its interfaces and levels of Functionality are not well separated

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

27

MS-DOS Layer Structure

 The operating system is divided into a number of layers (levels), each built on top of lower layers. The

bottom layer (layer 0), is the hardware; the highest (layer N) is the user interface.

 With modularity, layers are selected such that each uses functions (operations) and services of

only lower-level layers

Traditional UNIX System Structure

UNIX

 UNIX – limited by hardware functionality, the original UNIX operating system had limited structuring.

The UNIX OS consists of two separable parts

Systems programs

The kernel

Consists of everything below the system-call interface and above the physical hardware

Provides the file system, CPU scheduling, memory management, and other operating-system

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

28

functions; a large number of functions for one level

Layered Operating System

Micro kernel System Structure

Moves as much from the kernel into “user” space

Communication takes place between user modules using message passing

Benefits:

Easier to extend a microkernel

Easier to port the operating system to new architectures More reliable (less code

is running in kernel mode)

More secure

Detriments:

Performance overhead of user space to kernel space communication

MacOS X Structure

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

29

Modules

Most modern operating systems implement kernel modules

Uses object-oriented approach

Each core component is separate

Each talks to the others over known interfaces

Each is loadable as needed within the kernel

Overall, similar to layers but with more flexible

Solaris Modular Approach

Virtual Machines

 A virtual machine takes the layered approach to its logical conclusion. It treats hardware and the

operating system kernel as though they were all hardware

A virtual machine provides an interface identical to the underlying bare hardware

The operating system host creates the illusion that a process has its own processor and (virtual memory)

Each guest provided with a (virtual) copy of underlying computer

Virtual Machines History and Benefits

First appeared commercially in IBM mainframes in 1972

Fundamentally, multiple execution environments (different operating systems) can share the same hardware

Protect from each other

Some sharing of file can be permitted, controlled

Commutate with each other, other physical systems via networking

Useful for development, testing

Consolidation of many low-resource use systems onto fewer busier systems

“Open Virtual Machine Format”, standard format of virtual machines, allows a VM to run within many

different virtual machine (host) platforms

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

30

Para-virtualization

Presents guest with system similar but not identical to hardware

Guest must be modified to run on par virtualized hardware

Guest can be an OS, or in the case of Solaris 10 applications running in containers

Solaris 10 with Two Containers

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

31

VMware Architecture

The Java Virtual Machine

Operating-System Debugging

Debugging is finding and fixing errors, or bugs

generate log files containing error information

Failure of an application can generate core dump file capturing memory of the process

Operating system failure can generate crash dump file containing kernel memory Beyond

crashes, performance tuning can optimize system performance

Kernighan’s Law: “Debugging is twice as hard as writing the code in the rst place. Therefore, if you

write the code as cleverly as possible, you are, by definition, not smart enough to debug it.”

DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation on production systems

Probes fire when code is executed, capturing state data and sending it to consumers of those probes

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

32

Process

A process is a program at the time of execution.

Differences between Process and Program

Process Program

Process is a dynamic object Program is a static object

Process is sequence of instruction

execution

Program is a sequence of instructions

Process loaded in to main memory Program loaded into secondary storage

devices

Time span of process is limited Time span of program is unlimited

Process is a active entity Program is a passive entity

 Process States

When a process executed, it changes the state, generally the state of process is determined by

the current activity of the process. Each process may be in one of the following states:

1. New : The process is beingcreated.

2. Running : The process is beingexecuted.

3. Waiting : The process is waiting for some event tooccur.

4. Ready : The process is waiting to be assigned to a processor.

5. Terminated : The Process has finishedexecution.

Only one process can be running in any processor at any time, But many process may be in

ready and waiting states. The ready processes are loaded into a “ready queue”.

Diagram of process state

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

33

a) New ->Ready : OS creates process and prepares the

process to be executed,thenOSmoved the process into readyqueue.

b) Ready->Running : OS selects one of the Jobs from ready Queue and move themfrom

ready to Running.

c) Running->Terminated : When the Execution of a process has Completed,

OSterminatesthatprocess from running state. Sometimes OS terminates the process for

someother reasons including Time exceeded, memory unavailable, access violation,

protection Error, I/O failure and soon.

d) Running->Ready : When the time slot of the processor expired (or) If the

processorreceivedanyinterrupt signal, the OS shifted Running -> ReadyState.

e) Running -> Waiting : A process is put into the waiting state, if the process need an

event occur (or) an I/O Devicerequire.

f) Waiting->Ready : A process in the waiting state is moved to ready

state when the eventforwhichit has beenCompleted.

 Process Control Block:

Each process is represented in the operating System by a Process Control Block.

It is also called Task Control Block. It contains many pieces of information associated with a specific

Process.

Process State

Program Counter

CPU Registers

CPU Scheduling Information

Memory – Management Information

Accounting Information

I/O Status Information

Process Control Block

1. ProcessState : The State may be new, ready, running, and waiting,Terminated…

2. ProgramCounter : indicates the Address of the next Instruction to be executed.

3. CPUregisters : registers include accumulators, stack pointers,

General purpose Registers….

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

34

4. CPU-SchedulingInfo : includes a process pointer, pointers to

schedulingQueues,other scheduling parametersetc.

5. Memory management Info: includes page tables, segmentation tables, value of

base and limit registers.

6. AccountingInformation: includes amount of CPU used, time limits, Jobs(or)Process numbers.

7. I/O StatusInformation: Includes the list of I/O Devices Allocated to theprocesses, list of open

files.

 Threads:

A process is divide into number of light weight process, each light weight process is said to be

a Thread. The Thread has a program counter (Keeps track of which instruction to execute

next), registers (holds its current working variables), stack (execution History).

Thread States:

1. bornState : A thread is justcreated.

2. readystate : The thread is waiting forCPU.

3. running : System assigns the processor to thethread.

4. sleep : A sleeping thread becomes ready after the designated sleep timeexpires.

5. dead : The Execution of the threadfinished.

Eg: Word processor.

Typing, Formatting, Spell check, saving are threads.

Differences between Process and Thread

Process Thread

Process takes more time to create. Thread takes less time to create.

it takes more time to complete execution &

terminate.

Less time to terminate.

Execution is very slow. Execution is very fast.

It takes more time to switch b/w two

processes.

It takes less time to switch b/w two

threads.

Communication b/w two processes is difficult . Communication b/w two threads is

easy.

Process can’t share the same memory area. Threads can share same memory area.

System calls are requested to communicate

each other.

System calls are not required.

Process is loosely coupled. Threads are tightly coupled.

It requires more resources to execute. Requires few resources to execute.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

35

Multithreading

A process is divided into number of smaller tasks each task is called a Thread. Number of

Threads with in a Process execute at a time is called Multithreading.

If a program, is multithreaded, even when some portion of it is blocked, the whole program is

not blocked.The rest of the program continues working If multiple CPU’s are available.

Multithreading gives best performance.If we have only a single thread, number of CPU’s

available, No performance benefits achieved.

 Process creation is heavy-weight while thread creation is light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

CODE- Contains instruction

DATA- holds global variable FILES-

opening and closing files

REGISTER- contain information about CPU state

STACK-parameters, local variables, functions

Types Of Threads:

1) User Threads : Thread creation, scheduling, management happen in user space by

Thread Library. user threads are faster to create and manage. If a user thread performs a system

call, which blocks it, all the other threads in that process one also automatically blocked, whole

process is blocked.

Advantages
 Thread switching does not require Kernel mode privileges.
 User level thread can run on any operating system.

 Scheduling can be application specific in the user level thread.

 User level threads are fast to create and manage.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

36

Disadvantages

2) Kernel Threads: kernel creates, schedules, manages these threads .these threads are

slower, manage. If one thread in a process blocked, over all process need not be blocked.

Disadvantages

Multithreading Models

Some operating system provides a combined user level thread and Kernel level thread facility. Solaris is

a good example of this combined approach. In a combined system, multiple threads within the same

application can run in parallel on multiple processors and a blocking system call need not block the entire

process. Multithreading models are three types

 In a typical operating system, most system calls areblocking.
 Multithreaded application cannot take advantage ofmultiprocessing.

Advantages

 Kernel can simultaneously schedule multiple threads from the same process on multiple

processes.

 If one thread in a process is blocked, the Kernel can schedule another thread of the same process.

 Kernel routines themselves can multithreaded.

 Kernel threads are generally slower to create and manage than the userthreads.
 Transfer of control from one thread to another within same process requires a mode switch to

the Kernel.

 Many to many relationship.
 Many to one relationship.
 One to one relationship.

Many to Many Model

In this model, many user level threads multiplexes to the Kernel thread of smaller or equal numbers. The

number of Kernel threads may be specific to either a particular application or a particular machine.

Following diagram shows the many to many model. In this model, developers can create as many user

threads as necessary and the corresponding Kernel threads can run in parallels on a multiprocessor.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

37

One to One Model

There is one to one relationship of user level thread to the kernel level thread.This model provides more

concurrency than the many to one model. It also another thread to run when a thread makes a blocking

system call. It support multiple thread to execute in parallel on microprocessors.

Disadvantage of this model is that creating user thread requires the corresponding Kernel thread. OS/2,

windows NT and windows 2000 use one to one relationship model.

Many to One Model

Many to one model maps many user level threads to one Kernel level thread. Thread management is done
in user space. When thread makes a blocking system call, the entire process will be blocks. Only one

thread can access the Kernel at a time,so multiple threads are unable to run in parallel on multiprocessors.

If the user level thread libraries are implemented in the operating system in such a way that system does

not support them then Kernel threads use the many to one relationship modes.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

38

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

39

UNIT-II

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria:

CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms:

Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM

and EDF.

Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution,

Strict Alternation, Peterson’s Solution, The Producer/Consumer Problem, Semaphores, Event Counters,

Monitors, Message Passing, Classical IPC Problems: Reader’s & Writer Problem, Dinning Philosopher

Problem etc.

 PROCESS SCHEDULING:

CPU is always busy in Multiprogramming. Because CPU switches from one job to another job. But in

simple computers CPU sit idle until the I/O request granted.

scheduling is a important OS function. All resources are scheduled before use.(cpu,

memory, devices…..)

Process scheduling is an essential part of a Multiprogramming operating systems. Such

operating systems allow more than one process to be loaded into the executable memory at

a time and the loaded process shares the CPU using time multiplexing

. Scheduling Objectives

 Maximize throughput.

 Maximize number of users receiving acceptable response times.

 Be predictable.

 Balance resource use.

 Avoid indefinite postponement.

 Enforce Priorities.

 Give preference to processes holding key resources

SCHEDULING QUEUES: people live in rooms. Process are present in rooms knows

as queues. There are 3types

1. job queue: when processes enter the system, they are put into a job queue, which

consists all processes in the system. Processes in the job queue reside on mass storage and await

the allocation of main memory.

2. ready queue: if a process is present in main memory and is ready to be allocated to

cpu for execution, is kept in readyqueue.

3. device queue: if a process is present in waiting state (or) waiting for an i/o event to

complete is said to bein device queue.(or)

The processes waiting for a particular I/O device is called device queue.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

40

Schedulers : There are 3 schedulers

1. Long term scheduler.

2. Medium term scheduler

3. Short term scheduler.

Scheduler duties:

 Maintains the queue.

 Select the process from queues assign to CPU.

Types of schedulers

1. Long term scheduler:

select the jobs from the job pool and loaded these jobs into main memory (ready queue).

Long term scheduler is also called job scheduler.

2. Short term scheduler:

select the process from ready queue, and allocates it to the cpu.

If a process requires an I/O device, which is not present available then process enters device

queue.

short term scheduler maintains ready queue, device queue. Also called as cpu scheduler.

3. Medium term scheduler: if process request an I/O device in the middle of the

execution, then the process removed from the main memory and loaded into the waiting queue.

When the I/O operation completed, then the job moved from waiting queue to ready queue.

These two operations performed by medium term scheduler.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

41

Context Switch: Assume, main memory contains more than one process. If cpu is executing a process, if

time expires or if a high priority process enters into main memory, then the scheduler saves information

about current process in the PCB and switches to execute the another process. The concept of moving CPU

by scheduler from one process to other process is known as context switch.

Non-Preemptive Scheduling: CPU is assigned to one process, CPU do not release until the competition of

that process. The CPU will assigned to some other process only after the previous process has finished.

Preemptive scheduling: here CPU can release the processes even in the middle of the

execution. CPU received a signal from process p2. OS compares the priorities of p1 ,p2. If

p1>p2, CPU continues the execution of p1. If p1<p2 CPU preempt p1 and assigned to p2.

Dispatcher: The main job of dispatcher is switching the cpu from one process to another

process. Dispatcher connects the cpu to the process selected by the short term scheduler.

Dispatcher latency: The time it takes by the dispatcher to stop one process and start another

process is known as dispatcher latency. If the dispatcher latency is increasing, then the degree of

multiprogramming decreases.

SCHEDULING CRITERIA:

1. Throughput: how many jobs are completed by the cpu with in a timeperiod.

2. Turn around time : The time interval between the submission of the process

and time of the completion is turn around time.

TAT = Waiting time in ready queue + executing time + waiting time in waiting queue for

I/O.

3. Waiting time: The time spent by the process to wait for cpu to beallocated.

4. Response time: Time duration between the submission and firstresponse.

5. Cpu Utilization: CPU is costly device, it must be kept as busy aspossible.

Eg: CPU efficiency is 90% means it is busy for 90 units, 10 units idle.

CPU SCHEDULINGALGORITHMS:

1. First come First served scheduling: (FCFS): The process that request the CPU

first is holds the cpu first. If a process request the cpu then it is loaded into the ready queue,

connect CPU to that process.

Consider the following set of processes that arrive at time 0, the length of the cpu burst time

given in milli seconds.

burst time is the time, required the cpu to execute that job, it is in milli seconds.

Process Burst time(milliseconds)

P1 5

P2 24

P3 16

P4 10

P5 3

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

42

 Average turn around time:

Turn around time for p1= 0+5=5.

Turn around time for

p2=5+24=29 Turn around time

for p3=29+16=45 Turn around

time for p4=45+10=55 Turn

around time for p5= 55+3=58

Average turn around time= (5+29++45+55+58/5) = 187/5 =37.5 millisecounds

Average waiting time:

Waiting time for p1=0

Waiting time for p2=5-0=5

Waiting time for p3=29-0=29

Waiting time for p4=45-0=45

Waiting time for p5=55-0=55

Average waiting time= 0+5+29+45+55/5 = 125/5 = 25 ms.

Average Response Time :

Formula : First Response - Arrival

Time Response Time for P1 =0

Response Time for P2 => 5-0 = 5

Response Time for P3 => 29-0 = 29

Response Time for P4 => 45-0 = 45

Response Time for P5 => 55-0 = 55

Average Response Time => (0+5+29+45+55)/5 =>25ms

Turn around time= waiting time + burst time

waiting time= starting time- arrival time

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

43

1) First Come FirstServe:

It is Non Primitive Scheduling Algorithm.

PROCESS BURST

TIME

ARRIVAL

TIME

P1 3 0

P2 6 2

P3 4 4

P4 5 6

P5 2 8

Process arrived in the order P1, P2, P3, P4, P5.

P1 arrived at 0 ms.

P2 arrived at 2 ms.

P3 arrived at 4 ms.

P4 arrived at 6 ms.

P5 arrived at 8 ms.

Average Turn Around Time

Formula : Turn around Time =: waiting time + burst time

 Turn Around Time for P1 => 0+3= 3

Turn Around Time for P2 => 1+6 = 7

Turn Around Time for P3 => 5+4 = 9

Turn Around Time for P4 => 7+ 5= 12

Turn Around Time for P5 => 2+ 10=12

Average Turn Around Time => (3+7+9+12+12)/5 =>43/5 = 8.50 ms.

Average Response Time :

Formula : Response Time = First Response - Arrival Time

Response Time of P1 = 0

Response Time of P2 => 3-2 = 1

Response Time of P3 => 9-4 = 5

Response Time of P4 => 13-6 = 7

Response Time of P5 => 18-8 =10

Average Response Time => (0+1+5+7+10)/5 => 23/5 = 4.6 ms

Advantages: Easy to Implement, Simple.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

44

Disadvantage: Average waiting time is very high.

2) Shortest Job First Scheduling (SJF):

Which process having the smallest CPU burst time, CPU is assigned to that process . If

two process having the same CPU burst time, FCFS is used.

PROCESS CPU BURST TIME

P1 5

P2 24

P3 16

P4 10

P5 3

P5 having the least CPU burst time (3ms). CPU assigned to that (P5). After completion of

P5 short term scheduler search for nest (P1).......

Average Waiting Time :

Formula = Staring Time - Arrival Time

waiting Time for P1 => 3-0 = 3

 waiting Time for P2 => 34-0 = 34

waiting Time for P3 => 18-0 = 18

 waiting Time for P4 =>8-0=8

waiting time for P5=0

Average waiting time => (3+34+18+8+0)/5 => 63/5 =12.6 ms

Average Turn Around Time :

Formula = waiting Time + burst Time

Turn Around Time for P1 => 3+5 =8

Turn Around for P2 => 34+24 =58

Turn Around for P3 => 18+16 = 34

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

45

Turn Around Time for P4 => 8+10 =18

Turn Around Time for P5 => 0+3 = 3

Average Turn around time => (8+58+34+18+3)/5 => 121/5 = 24.2 ms

Average Response Time :

Formula : First Response - Arrival Time

First Response time for P1 =>3-0 = 3

First Response time for P2 => 34-0 = 34

First Response time for P3 => 18-0 = 18

First Response time for P4 => 8-0 = 8

First Response time for P5 = 0

Average Response Time => (3+34+18+8+0)/5 => 63/5 = 12.6 ms

SJF is Non primitive scheduling algorithm

Advantages : Least average waiting time

Least average turn around time Least

average response time

Average waiting time (FCFS) = 25 ms

Average waiting time (SJF) = 12.6 ms 50% time saved in SJF.

Disadvantages:

 Knowing the length of the next CPU burst time is difficult.

 Aging (Big Jobs are waiting for long time for CPU)

3) Shortest Remaining Time First (SRTF);

This is primitive scheduling algorithm.

Short term scheduler always chooses the process that has term shortest remaining time. When a

new process joins the ready queue , short term scheduler compare the remaining time of

executing process and new process. If the new process has the least CPU burst time, The

scheduler selects that job and connect to CPU. Otherwise continue the old process.

PROCESS BURST TIME ARRIVAL TIME

P1 3 0

P2 6 2

P3 4 4

P4 5 6

P5 2 8

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

46

P1 arrives at time 0, P1 executing First , P2 arrives at time 2. Compare P1 remaining time and P2 (3-2 =

1) and 6. So, continue P1 after P1, executing P2, at time 4, P3 arrives, compare P2 remaining time (6-1=5

) and 4 (4<5) .So, executing P3 at time 6, P4 arrives. Compare P3 remaining time and P4 (4-

2=2) and 5 (2<5). So, continue P3 , after P3, ready queue consisting P5 is the least out of

three. So execute P5, next P2, P4.

FORMULA : Finish time - Arrival

Time Finish Time for P1 => 3-0 = 3

Finish Time for P2 => 15-2 = 13

Finish Time for P3 => 8-4 =4

Finish Time for P4 => 20-6 = 14

Finish Time for P5 => 10-8 = 2

Average Turn around time => 36/5 = 7.2 ms.

4)ROUND ROBIN SCHEDULING ALGORITHM :

It is designed especially for time sharing systems. Here CPU switches between the processes.

When the time quantum expired, the CPU switched to another job. A small unit of time, called

a time quantum or time slice. A time quantum is generally from 10 to 100 ms. The time

quantum is generally depending on OS. Here ready queue is a circular queue. CPU scheduler

picks the first process from ready queue, sets timer to interrupt after one time quantum and

dispatches the process.

PROCESS BURST TIME

P1 30

P2 6

P3 8

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

47

AVERAGE WAITING TIME :

Waiting time for P1 => 0+(15-5)+(24-20) => 0+10+4 = 14

Waiting time for P2 => 5+(20-10) => 5+10 = 15

Waiting time for P3 => 10+(21-15) => 10+6 = 16

Average waiting time => (14+15+16)/3 = 15 ms.

AVERAGE TURN AROUND TIME :

FORMULA : Turn around time = waiting time + burst Time

Turn around time for P1 => 14+30 =44

Turn around time for P2 => 15+6 = 21

Turn around time for P3 => 16+8 = 24

Average turn around time => (44+21+24)/3 = 29.66 ms

5) PRIORITY SCHEDULING :

PROCESS BURST

TIME

PRIORITY

P1 6 2

P2 12 4

P3 1 5

P4 3 1

P5 4 3

P4 has the highest priority. Allocate the CPU to process P4 first next P1, P5, P2, P3.

AVERAGE WAITING TIME :

Waiting time for P1 => 3-0 =3

Waiting time for P2 => 13-0 = 13

Waiting time for P3 => 25-0 = 25

Waiting time for P4 => 0

Waiting time for P5 => 9-0 =9

Average waiting time => (3+13+25+0+9)/5 = 10 ms

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

48

AVERAGE TURN AROUND TIME :

Turn around time for P1 =>3+6 = 9

Turn around time for P2 => 13+12= 25

Turn around time for P3 => 25+1 = 26

Turn around time for P4 => 0+3= 3

Turn around time for P5 => 9+4 = 13

Average Turn around time => (9+25+26+3+13)/5 = 15.2 ms

Disadvantage: Starvation

Starvation means only high priority process are executing, but low priority

process are waiting for the CPU for the longest period of the time.

Multiple – processor scheduling:

When multiple processes are available, then the scheduling gets more complicated,

because there is more than one CPU which must be kept busy and in effective use

at all times.

Load sharing resolves around balancing the load between multiple processors.

Multi processor systems may be heterogeneous (It contains different kinds of

CPU’s) (or) Homogeneous(all the same kind of CPU).

1) Approaches to multiple-processor scheduling

a)Asymmetric multiprocessing

One processor is the master, controlling all activities and running all kernel code,

while the other runs only user code.

b)Symmetric multiprocessing:

Each processor schedules its own job. Each processor may have its own private queue of ready

processes.

2) Processor Affinity

Successive memory accesses by the process are often satisfied in cache memory.

what happens if the process migrates to another processor. the contents of cache

memory must be invalidated for the first processor, cache for the second processor

must be repopulated. Most Symmetric multi processor systems try to avoid

migration of processes from one processor to another processor, keep a process

running on the same processor. This is called processor affinity.

a) Soft affinity:

Soft affinity occurs when the system attempts to keep processes on the same

processor but makes no guarantees.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

49

b) Hard affinity:

Process specifies that it is not to be moved between processors.

3) Load balancing:

One processor wont be sitting idle while another is overloaded.

Balancing can be achived through push migration or pull migration.

Push migration:

Push migration involves a separate process that runs periodically(e.g every 200 ms)

and moves processes from heavily loaded processors onto less loaded processors.

Pull migration:

Pull migration involves idle processors taking processes from the ready queues of the other

processors.

Real time scheduling:

Real time scheduling is generally used in the case of multimedia operating systems.

Here multiple processes compete for the CPU. How to schedule processes A,B,C so

that each one meets its deadlines. The general tendency is to make them pre-

emptable, so that a process in danger of missing its deadline can preempt another

process. When this process sends its frame, the preempted process can continue

from where it had left off. Here throughput is not so significant. Important is that

tasks start and end as per their deadlines.

RATE MONOTONIC (RM) SCHEDULING ALGORITHM

Rate monotonic scheduling Algorithm works on the principle of preemption. Preemption occurs

on a given processor when higher priority task blocked lower priority task from execution. This

blocking occurs due to priority level of different tasks in a given task set. rate monotonic is a

preemptive algorithm which means if a task with shorter period comes during execution it will

gain a higher priority and can block or preemptive currently running tasks. In RM priorities are

assigned according to time period. Priority of a task is inversely proportional to its timer period.

Task with lowest time period has highest priority and the task with highest period will have

lowest priority.

For example, we have a task set that consists of three tasks as follows

Tasks Execution time(Ci) Time period(Ti)

T1 0.5 3

T2 1 4

T3 2 6

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

50

Table 1. Task set

U= 0.5/3 +1/4 +2/6 = 0.167+ 0.25 + 0.333 = 0.75

As processor utilization is less than 1 or 100% so task set is schedulable and it also satisfies the above

equation of rate monotonic scheduling algorithm.

Figure 1. RM scheduling of Task set in table 1.

A task set given in table 1 it RM scheduling is given in figure 1. The explanation of above is as follows

1. According to RM scheduling algorithm task with shorter period has higher priority so T1 has

high priority, T2 has intermediate priority and T3 has lowest priority. At t=0 all the tasks are

released. Now T1 has highest priority so it executes first till t=0.5.

2. At t=0.5 task T2 has higher priority than T3 so it executes first for one-time units till t=1.5. After

its completion only one task is remained in the system that is T3, so it starts its execution and

executes till t=3.

3. At t=3 T1 releases, as it has higher priority than T3 so it preempts or blocks T3 and starts it

execution till t=3.5. After that the remaining part of T3 executes.

4. At t=4 T2 releases and completes it execution as there is no task running in the system at this

time.

5. At t=6 both T1 and T3 are released at the same time but T1 has higher priority due to shorter

period so it preempts T3 and executes till t=6.5, after that T3 starts running and executes till t=8.

6. At t=8 T2 with higher priority than T3 releases so it preempts T3 and starts its execution.

7. At t=9 T1 is released again and it preempts T3 and executes first and at t=9.5 T3 executes its

remaining part. Similarly, the execution goes on.

Earliest Deadline First (EDF) Scheduler Algorithm

The EDF is a dynamic algorithm, Job priorities are re-evaluated at every decision point, this re-

evaluation is based on relative deadline of a job or task, the closer to the deadline, the higher the priority.

The EDF has the following advantages:

1. Very flexible (arrival times and deadlines do not need to be known before implementation).

2. Moderate complexity.

3. Able to handle aperiodic jobs.

The EDF has the following disadvantages:

1. Optimally requires pre-emptive jobs.

2. Not optimal on several processors.

3. Difficult to verify.

https://i0.wp.com/microcontrollerslab.com/wp-content/uploads/2018/06/rate-monotonic-example.jpg?ssl=1

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

51

Example

Consider the following task set in Table 1. P represents the Period, e the Execution time and D stands

for the Deadline. Assume that the job priorities are re-evaluated at the release and deadline of a job.

P e D

T1 2 0.5 2

T2 4 1 4

T3 5 1.5 5

Solution

Mark all deadlines related to all the tasks

 First mark all deadlines related to the tasks as shown in Fig. 1. T1, T2 and T3 are represented

with Red, Green and Blue colour respectively. The schedule is from 0 – 20ms as shown.

 At T = 0, T1 has the closest deadline, so schedule T1.

 At T = 0.5, T1 is completed, its next release time is at 2ms. T2 is closer to its deadline so T2 is

scheduled next and executes for 1s.

 At T = 1.5, T2 job is completed. T3 is next because it is closer to its deadline while T2 has not

been released.

 At T = 2, a new instance of T1 is released, therefore, T3 is interrupted and has 1ms left to

complete execution. T1 executes

 At T = 2.5, The only ready job is T3 which is scheduled until completion.

 At T = 4, a new instance of T1 is released which executes for 0.5ms.

 At T = 4.5, T1 is now completed, so T2 is now the task closest to its deadline and is scheduled.

 At T = 5.5, T3 is scheduled but is pre-empted at T = 6 so runs for 0.5ms

 At T = 6, a new instance of T1 is released and therefore scheduled.

 At T = 6.5, T3 is closest to its deadline because T1 and T3 have not been released. So T3 is

allowed to complete its execution which is 1ms.

 At T = 8, a new instance of T1 is released and is scheduled.

 At T = 8.5, T2 is the task having the closest deadline and so is scheduled to run for its execution

time.

 At T = 10, the next release of T1 is scheduled.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

52

 At T = 10.5, the next job with the closest deadline is T3 because the next T2 job will be released

at T = 12. So T3 is scheduled until completion.

 At T = 12, the next release of T1 is scheduled.

 At T = 12.5, T2 is scheduled as it is the job with the closest deadline.

 At T = 14, the next release of T1 is scheduled.

 At T = 15, the next release of T3 is scheduled because it is now the job with the closest deadline

because the next release of T1 and T2 is at 16ms. T3 runs for 1ms.

 At T = 16, T3 is pre=empted because a new release of T1 which has the closest deadline is now

available.

 T = 16.5, T2 is the job with the closest deadline, so it is scheduled for the duration of its

execution time.

 At T = 17.5, since T1 and T2 have completed, T3 resumes execution to complete its task which

ran for only 1ms the last time. T3 completes execution at T = 18.

 At T = 18, a new instance of T1 is released and scheduled to run for its entire execution time.

 At T = 18.5, no job is released yet because a new release of T1, T2 and T3 are at 20ms.

 Fig. 2 shows the EDF schedule from T = 0 to T = 20.

 .

Inter Process communication:

Process synchronization refers to the idea that multiple processes are to join up or

handshake at a certain point, in order to reach an agreement or commit to a certain

sequence of action. Coordination of simultaneous processes to complete a task is

known as process synchronization.

The critical section problem

Consider a system , assume that it consisting of n processes. Each process having a

segment of code. This segment of code is said to be critical section.

E.G: Railway Reservation System.

Two persons from different stations want to reserve their tickets, the train number,

destination is common, the two persons try to get the reservation at the same time.

Unfortunately, the available berths are only one; both are trying for that berth.

It is also called the critical section problem. Solution is when one process is

executing in its critical section, no other process is to be allowed to execute in

its critical section.

https://en.wikipedia.org/wiki/Handshaking

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

53

The critical section problem is to design a protocol that the processes can use to

cooperate. Each process must request permission to enter its critical section. The

section of code implementing this request is the entry section. The critical section

may be followed by an exit section. The remaining code is the remainder section.

A solution to the critical section problem must satisfy the following 3

requirements: 1.mutual exclusion:

Only one process can execute their critical section at any time.

2. Progress:

When no process is executing a critical section for a data, one of the processes

wishing to enter a critical section for data will be granted entry.

3. Bounded wait:

No process should wait for a resource for infinite amount of time.

Critical section:

The portion in any program that accesses a shared resource is called as critical section (or)

critical region.

 Peterson’s solution:

Peterson solution is one of the solutions to critical section problem involving two

processes. This solution states that when one process is executing its critical section

then the other process executes the rest of the code and vice versa.

Peterson solution requires two shared data items:

1) turn: indicates whose turn it is to enter

into the critical section. If turn == i ,then

process i is allowed into their critical section.

2) flag: indicates when a process wants to enter into critical section. when

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

54

process i wants to enter their critical section,it sets flag[i] to true.

do {flag[i] = TRUE; turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

 Synchronization hardware

In a uniprocessor multiprogrammed system, mutual exclusion can be obtained by

disabling the interrupts before the process enters its critical section and enabling

them after it has exited the critical section.

Disable

interrupts

Critical section

Enable interrupts

Once a process is in critical section it cannot be interrupted. This solution

cannot be used in multiprocessor environment. since processes run

independently on different processors.

In multiprocessor systems, Testandset instruction is provided,it completes

execution without interruption. Each process when entering their critical section

must set lock,to prevent other processes from entering their critical sections

simultaneously and must release the lock when exiting their critical sections.

do {

acquire

lock

critical

section

release

lock

remainder

section

} while (TRUE);

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

55

A process wants to enter critical section and value of lock is false then testandset

returns false and the value of lock becomes true. thus for other processes wanting

to enter their critical sections testandset returns true and the processes do busy

waiting until the process exits critical section and sets the value of lock to false.

• Definition:

boolean TestAndSet(boolean&lock){

boolean temp=lock;

Lock=true;

return temp;

}

Algorithm for TestAndSet

do{

 while testandset(&lock)

 //do nothing

 //critical section

 lock=false

remainder section

}while(TRUE);

Swap instruction can also be used for mutual exclusion

Definition

Void swap(boolean &a, boolean &b)

{

boolean temp=a;

a=b;

b=temp;

}

Algorithm

do

{

key=true;

while(key=true)

swap(lock,key);

critical section

lock=false;

remainder section

}while(1);

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

56

lock is global variable initialized to false.each process has a local variable key. A

process wants to enter critical section,since the value of lock is false and key is

true.

lock=false

key=true

after swap instruction,

lock=true

key=false

now key=false becomes true,process exits repeat-until,and enter into critical section.

When process is in critical section (lock=true),so other processes wanting to enter

critical section will have

lock=true

key=true

Hence they will do busy waiting in repeat-until loop until the process exits critical

section and sets the value of lock to false.

Semaphores

A semaphore is an integer variable.semaphore accesses only through two operations.

1) wait: wait operation decrements the count by1.

If the result value is negative,the process executing the wait operation is blocked.

2) signaloperation:

Signal operation increments by 1,if the value is not positive then one of the

process blocked in wait operation unblocked.

wait (S) {

while S <= 0 ; //

no-op

 S--;

}

signal (S)

{

S++;

}

In binary semaphore count can be 0 or 1. The value of semaphore is

initialized to 1.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

57

do {

wait (mutex);

// Critical Section

signal (mutex);

// remainder section

} while (TRUE);

First process that executes wait operation will be immediately granted sem.count to 0.

If some other process wants critical section and executes wait() then it is

blocked,since value becomes -1. If the process exits critical section it executes

signal().sem.count is incremented by 1.blocked process is removed from queue and

added to ready queue.

Problems:

1) Deadlock

Deadlock occurs when multiple processes are blocked.each waiting for a resource

that can only be freed by one of the other blocked processes.

2) Starvation

one or more processes gets blocked forever and never get a chance to take their

turn in the critical section.

3) Priority inversion

If low priority process is running ,medium priority processes are waiting for low

priority process,high priority processes are waiting for medium priority

processes.this is called Priority inversion.

The two most common kinds of semaphores are counting semaphores and

binary semaphores. Counting semaphores represent multiple resources,

while binary semaphores, as the name implies, represents two possible states

(generally 0 or 1; locked or unlocked).

Classic problems of synchronization

1) Bounded-buffer problem

Two processes share a common ,fixed –size buffer.

Producer puts information into the buffer, consumer takes it out.

The problem arise when the producer wants to put a new item in the buffer,but it is

already full. The solution is for the producer has to wait until the consumer has

consumed atleast one buffer. similarly if the consumer wants to remove an item

from the buffer and sees that the buffer is empty,it goes to sleep until the producer

puts something in the buffer and wakes it up.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

58

 The structure of the producer process

do {

// produce an item in

nextp wait (empty);

wait (mutex);

// add the item to the

buffer signal (mutex);

signal (full);

} while (TRUE);

The structure of the consumer process

do {

wait

(full);

wait

(mutex);

// remove an item from buffer to

nextc signal (mutex);

signal (empty);

// consume the item in nextc

} while (TRUE);

2) The readers-writers problem

A database is to be shared among several concurrent processes.some processes may

want only to read the database,some may want to update the database.If two readers

access the shared data simultaneously no problem.if a write,some other process

access the database simultaneously problem arised.Writes have excusive access to

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

59

the shared database while writing to the database.This problem is known as

readers- writes problem.

First readers-writers problem

No reader be kept waiting unless a writer has already obtained permission to

use the shared resource.

Second readers-writes problem:

Once writer is ready,that writer performs its write as soon as possible.

A process wishing to modify the shared data must request the lock in write mode.

multiple processes are permitted to concurrently acquire a reader-writer lock in

read mode. A reader writer lock in read mode. but only one process may acquire

the lock for writing as exclusive access is required for writers.

Semaphore mutex initialized to 1

o Semaphore wrt initialized to 1

o Integer read count initialized to 0

The structure of a writer process

do {

wait (wrt) ;

// writing is

performed

signal (wrt) ;

} while (TRUE);

The structure of a reader process

do {

wait (mutex) ;

readcount ++ ;

if (readcount == 1)

wait (wrt) ;

signal (mutex)

// reading is performed wait (mutex) ;

readcount

- - ;

if (readcount == 0)

 signal (wrt) ;

signal (mutex) ;

} while (TRUE);

3) Dining Philosophers problem

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

60

Five philosophers are seated on 5 chairs across a table. Each philosopher has a

plate full of noodles. Each philosopher needs a pair of forks to eat it. There are only

5 forks available all together. There is only one fork between any two plates of

noodles.

In order to eat, a philosopher lifts two forks, one to his left and the other to his

right. if he is successful in obtaining two forks, he starts eating after some time, he

stops eating and keeps both the forks down.

What if all the 5 philosophers decide to eat at the same time ?

All the 5 philosophers would attempt to pick up two forks at the same time. So,none of them

succeed.

One simple solution is to represent each fork with a semaphore.a philosopher

tries to grab a fork by executing wait() operation on that semaphore.he

releases his forks by executing the signal() operation.This solution guarantees

that no two neighbours are eating simultaneously.

Suppose all 5 philosophers become hungry simultaneously and each grabs his left

fork,he will be delayed forever.

The structure of Philosopher i:

do{

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

61

Several remedies:

1) Allow at most 4 philosophers to be sitting simultaneously at the table.

2) Allow a philosopher to pickup his fork only if both forks are available.

3) An odd philosopher picks up first his left fork and then right fork. an even philosopher picks up

his right fork and then his left fork.

MONITORS

The disadvantage of semaphore is that it is unstructured construct. Wait and signal operations

can be scattered in a program and hence debugging becomes difficult.

A monitor is an object that contains both the data and procedures needed to perform allocation of

a shared resource. To accomplish resource allocation using monitors, a process must call a

monitor entry routine. Many processes may want to enter the monitor at the same time. but

only one process at a time is allowed to enter. Data inside a monitor may be either global to all

routines within the monitor (or) local to a specific routine. Monitor data is accessible only within

the monitor. There is no way for processes outside the monitor to access monitor data. This is a

form of information hiding.

If a process calls a monitor entry routine while no other processes are executing inside the

monitor, the process acquires a lock on the monitor and enters it. while a process is in the

monitor, other processes may not enter the monitor to acquire the resource. If a process calls a

monitor entry routine while the other monitor is locked the monitor makes the calling process

wait outside the monitor until the lock on the monitor is released. The process that has the

resource will call a monitor entry routine to release the resource. This routine could free the

resource and wait for another requesting process to arrive monitor entry routine calls signal to

allow one of the waiting processes to enter the monitor and acquire the resource. Monitor gives

high priority to waiting processes than to newly arriving ones.

Structure:

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedurePn (…) {……}

Initialization code (…) { … }

}

}

Processes can call procedures p1,p2,p3……They cannot access the local variables of the

monitor

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

62

Schematic view of a Monitor

Monitor with Condition Variables

Monitor provides condition variables along with two operations on them i.e. wait and signal.

wait(condition variable)

signal(condition variable)

Every condition variable has an associated queue.A process calling wait on a

particular condition variable is placed into the queue associated with that condition

variable.A process calling signal on a particular condition variable causes a process

waiting on that condition variable to be removed from the queue associated with it.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

63

Solution to Producer consumer problem using monitors:

monitor

producerconsumer

condition

full,empty;

int count;

procedure insert(item)

{

if(count==MAX)

wait(full) ;

insert_item(item);

count=count+1;

if(count==1)

signal(empty);

}

procedure remove()

{

if(count==0)

wait(empty);

remove_item(item);

count=count-1;

 if(count==MAX-1)

signal(full);

}

procedure producer()

{

producerconsumer.insert(item);

}

procedure consumer()

{

producerconsumer.remove();

}

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

64

Solution to dining philosophers problem using monitors

A philosopher may pickup his forks only if both of them are available.A

philosopher can eat only if his two neighbours are not eating.some other

philosopher can delay himself when he is hungry.

Diningphilosophers.Take_forks() : acquires forks ,which may block the process.

Eat noodles ()

Diningphilosophers.put_forks(): releases the forks.

Resuming processes within a monitor

If several processes are suspended on condion x and x.signal() is executed by some process.

then

how do we determine which of the suspended processes should be resumed next ?

solution is FCFS(process that has been waiting the longest is resumed first).In

many circumstances, such simple technique is not adequate. alternate solution is to

assign priorities and wake up the process with the highest priority.

Resource allocation using monitor

boolean inuse=false;

conditionavailable;

//conditionvariable

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

65

monitorentry void get resource()

{

if(inuse) //is resource inuse

{

wait(available); wait until available issignaled

}

inuse=true; //indicate resource is now inuse

}

monitor entry void return resource()

{

inuse=false; //indicate resource

is not in use signal(available); //signal a

waiting process to proceed

}

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

66

UNIT-III

Memory Management: Basic concept, Logical and Physical address map, Memory allocation:

Contiguous Memory allocation – Fixed and variable partition–Internal and External fragmentation and

Compaction; Paging: Principle of operation – Page allocation – Hardware support for paging, protection

and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference,

Page fault , Working Set , Dirty page/Dirty bit – Demand paging, Page Replacement algorithms:

Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently

used (LRU).

Logical And Physical Addresses

An address generated by the CPU is commonly refereed as Logical Address, whereas the

address seen by the memory unit that is one loaded into the memory address register of the

memory is commonly refereed as the Physical Address. The compile time and load time

address binding generates the identical logical and physical addresses. However, the

execution time addresses binding scheme results in differing logical and physical addresses.

The set of all logical addresses generated by a program is known as Logical Address Space,

where as the set of all physical addresses corresponding to these logical addresses is

Physical Address Space. Now, the run time mapping from virtual address to physical

address is done by a hardware device known as Memory Management Unit. Here in the

case of mapping the base register is known as relocation register. The value in the relocation

register is added to the address generated by a user process at the time it is sent to memory

.Let's understand this situation with the help of example: If the base register contains the

value 1000,then an attempt by the user to address location 0 is dynamically relocated to

location 1000,an access to location 346 is mapped to location 1346.

Memory-Management Unit (MMU)

Hardware device that maps virtual to physical address

 In MMU scheme, the value in the relocation register is added to every address generated by a user

process at the time it is sent to memory

 The user program deals with logical addresses; it never sees the real physical addresses

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

67

The user program never sees the real physical address space, it always deals

with the Logical addresses. As we have two different type of addresses Logical address

in the range (0 to max) and Physical addresses in the range(R to R+max) where R is

the value of relocation register. The user generates only logical addresses and thinks that

the process runs in location to 0 to max. As it is clear from the above text that user program

supplies only logical addresses, these logical addresses must be mapped to physical address

before they are used.

Base and Limit Registers

A pair of base and limit registers define the logical address space

HARDWARE PROTECTION WITH BASE AND LIMIT

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can happen at three different stages

 Compile time: If memory location known a priori, absolute code can be generated; must recompile

code if starting location changes

Load time: Must generate relocatable code if memory location is not known at compile time

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

68

 Execution time: Binding delayed until run time if the process can be moved during its execution

from

one memory segment to another. Need hardware support for address maps (e.g., base and limit

registers)

Multistep Processing of a User Program

Dynamic Loading

Routine is not loaded until it is called

Better memory-space utilization; unused routine is never loaded

Useful when large amounts of code are needed to handle infrequently occurring cases

No special support from the operating system is required implemented through program design

Dynamic Linking

Linking postponed until execution time

Small piece of code, stub, used to locate the appropriate memory-resident library

routine Stub replaces itself with the address of the routine, and executes the routine

Operating system needed to check if routine is in processes’ memory address Dynamic

linking is particularly useful for libraries

System also known as shared libraries

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

69

Contiguous Allocation

Swapping

A process can be swapped temporarily out of memory to a backing store, and then brought back into

memory for continued execution Backing store – fast disk large enough to accommodate copies of all

memory images for all users; must provide direct access to these memory images Roll out, roll in –

swapping variant used for priority-based scheduling algorithms; lower-priority process is swapped out

so higher-priority process can be loaded and executed Major part of swap time is transfer time; total

transfer time is directly proportional to the amount of memory swapped and Modified versions of

swapping are found on many systems (i.e., UNIX, Linux, and Windows)

System maintains a ready queue of ready-to-run processes which have memory images on disk

Schematic View of Swapping

Main memory usually into two partitions:

Resident operating system, usually held in low memory with interrupt vector

User processes then held in high memorynRelocation registers used to protect user processes from each

other, and from changing operating-system code and data

Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each logical address must be less than the limit

register

 MMU maps logical address dynamically

Hardware Support for Relocation and Limit Registers

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

70

Multiple-partition allocation

Hole – block of available memory; holes of various size are scattered throughout memory

When a process arrives, it is allocated memory from a hole large enough to accommodate it

Contiguous memory allocation is one of the efficient ways of allocating main memory to

the processes. The memory is divided into two partitions. One for the Operating System and

another for the user processes. Operating System is placed in low or high memory depending

on the interrupt vector placed. In contiguous memory allocation each process is contained in

a single contiguous section of memory.

Memory protection

Memory protection is required to protect Operating System from the user processes and user

processes from one another. A relocation register contains the value of the smallest physical

address for example say 100040. The limit register contains the range of logical address for

example say 74600. Each logical address must be less than limit register. If a logical address

is greater than the limit register, then there is an addressing error and it is trapped. The limit

register hence offers memory protection.

The MMU, that is, Memory Management Unit maps the logical address dynamically, that is

at run time, by adding the logical address to the value in relocation register. This added value

is the physical memory address which is sent to the memory.

The CPU scheduler selects a process for execution and a dispatcher loads the limit and

relocation registers with correct values. The advantage of relocation register is that it provides

an efficient way to allow the Operating System size to change dynamically.

Memory allocation

There are two methods namely, multiple partition method and a general fixed partition

method. In multiple partition method, the memory is divided into several fixed size

partitions. One process occupies each partition. This scheme is rarely used nowadays.

Degree of multiprogramming depends on the number of partitions. Degree of

multiprogramming is the number of programs that are in the main memory. The CPU is

never left idle in multiprogramming. This was used by IBM OS/360 called MFT. MFT

stands for Multiprogramming with a Fixed number of Tasks.

Generalization of fixed partition scheme is used in MVT. MVT stands for Multiprogramming

with a Variable number of Tasks. The Operating System keeps track of which parts of

memory are available and which is occupied. This is done with the help of a table that is

maintained by the Operating System. Initially the whole of the available memory is treated as

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

71

one large block of memory called a hole. The programs that enter a system are maintained in

an input queue. From the hole, blocks of main memory are allocated to the programs in the

input queue. If the hole is large, then it is split into two, and one half is allocated to the

arriving process and the other half is returned. As and when memory is allocated, a set of

holes in scattered. If holes are adjacent, they can be merged.

Now there comes a general dynamic storage allocation problem. The following are the

solutions to the dynamic storage allocation problem.

 First fit: The first hole that is large enough is allocated. Searching for the holes

starts from the beginning of the set of holes or from where the previous first fit search

ended.

 Best fit: The smallest hole that is big enough to accommodate the incoming

process is allocated. If the available holes are ordered, then the searching can be reduced.

 Worst fit: The largest of the available holes is allocated.

Example:

First and best fits decrease time and storage utilization. First fit is generally faster.

Fragmentation

The disadvantage of contiguous memory allocation is fragmentation. There are two

types of fragmentation, namely, internal fragmentation and External fragmentation.

Internal fragmentation

When memory is free internally, that is inside a process but it cannot be used, we call that

fragment as internal fragment. For example say a hole of size 18464 bytes is available. Let

the size of the process be 18462. If the hole is allocated to this process, then two bytes are

left which is not used. These two bytes which cannot be used forms the internal

fragmentation. The worst part of it is that the overhead to maintain these two bytes is more

than two bytes.

External fragmentation

All the three dynamic storage allocation methods discussed above suffer external

fragmentation. When the total memory space that is got by adding the scattered holes is

sufficient to satisfy a request but it is not available contiguously, then this type of

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

72

fragmentation is called external fragmentation.

The solution to this kind of external fragmentation is compaction. Compaction is a method

by which all free memory that are scattered are placed together in one large memory block.

It is to be noted that compaction cannot be done if relocation is done at compile time or

assembly time. It is possible only if dynamic relocation is done, that is relocation at

execution time.

One more solution to external fragmentation is to have the logical address space and

physical address space to be non contiguous. Paging and Segmentation are popular non

contiguous allocation methods.

Example for internal and external fragmentation

Paging

A computer can address more memory than the amount physically installed on the system.

This extra memory is actually called virtual memory and it is a section of a hard that's set up

to emulate the computer's RAM. Paging technique plays an important role in implementing

virtual memory.

Paging is a memory management technique in which process address space is broken into

blocks of the same size called pages (size is power of 2, between 512 bytes and 8192 bytes).

The size of the process is measured in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory

called frames and the size of a frame is kept the same as that of a page to have optimum

utilization of the main memory and to avoid external fragmentation.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

73

Paging Hardware

Address Translation

Page address is called logical address and represented by page number and the offset.

Frame address is called physical address and represented by a frame number and the offset.

A data structure called page map table is used to keep track of the relation between a page

of a process to a frame in physical memory.

Paging Model of Logical and Physical Memory

Physical Address = Frame number + page offset

Logical Address = Page number + page offset

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

74

Paging Example

32-byte memory and 4-byte pages

Free Frames

When the system allocates a frame to any page, it translates this logical address into a

physical address and create entry into the page table to be used throughout execution of the

program.

When a process is to be executed, its corresponding pages are loaded into any available

memory frames. Suppose you have a program of 8Kb but your memory can accommodate

only 5Kb at a given point in time, then the paging concept will come into picture. When a

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

75

computer runs out of RAM, the operating system (OS) will move idle or unwanted pages of

memory to secondary memory to free up RAM for other processes and brings them back

when needed by the program.

This process continues during the whole execution of the program where the OS keeps

removing idle pages from the main memory and write them onto the secondary memory and

bring them back when required by the program.

Implementation of Page Table

Page table is kept in main memory

Page-table base register (PTBR) points to the page table

Page-table length register (PRLR) indicates size of the page table

In this scheme every data/instruction access requires two memory accesses. One for the page table

and one for the data/instruction.

The two memory access problem can be solved by the use of a special fast-lookup hardware

cache called associative memory or translation look-aside buffers (TLBs)

Paging Hardware With TLB

Memory Protection

Memory protection implemented by associating protection bit with each frame

Valid-invalid bit attached to each entry in the page table:

“valid” indicates that the associated page is in the process’ logical address space, and is thus a legal

page “invalid” indicates that the page is not in the process’ logical address space

Valid (v) or Invalid (i) Bit In A Page Table

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

76

Shared Pages

Shared code

 One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers,

window systems).

 Shared code must appear in same location in the logical address space of all processes

Private code and data

Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear anywhere in the logical address space

Shared Pages Example

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

77

Structure of the Page Table

Hierarchical Paging

Hashed Page Tables

 Inverted Page Tables

Hierarchical Page Tables

Break up the logical address space into multiple page tables A simple technique

is a two-level page table

Two-Level Page-Table Scheme

Two-Level Paging Example

A logical address (on 32-bit machine with 1K page size) is divided

into: a page number consisting of 22 bits

a page offset consisting of 10 bits

Since the page table is paged, the page number is further divided into:

a 12-bit page number a 10-bit page offset

Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within the page of the

outer page table

 12 10 10

Page number page offset

pi p2 d

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

78

Address-Translation Scheme

Three-level Paging Scheme

Hashed Page Tables

Common in address spaces > 32 bits

The virtual page number is hashed into a page table

This page table contains a chain of elements hashing to the same

location Virtual page numbers are compared in this chain searching for

a match

If a match is found, the corresponding physical frame is extracted

Hashed Page Table

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

79

Inverted Page Table

One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real memory location, with information

about the process that owns that page

 Decreases memory needed to store each page table, but increases time needed to search the table

when a page reference occurs

Use hash table to limit the search to one — or at most a few — page-table entries

Inverted Page Table Architecture

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging −

 Paging reduces external fragmentation, but still suffers from internal fragmentation.

 Paging is simple to implement and assumed as an efficient memory management

technique.

 Due to equal size of the pages and frames, swapping becomes very easy.

 Page table requires extra memory space, so may not be good for a system having

small RAM.

Segmentation

 Memory-management scheme that supports user view of memory A program is a

collection of segments

 A segment is a logical unit such as:

 main program

 Procedure

 function method

 object

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

80

 local variables, global variables

 common block

 stack

 symbol table

 arrays

User’s View of a Program

Segmentation Architecture

 Logical address consists of a two tuple:

o <segment-number, offset>,

Segment table – maps two-dimensional physical adpdrhesysess;iecaachltambleeemntroy rhyas:space

base – contains the starting physical address where the segments reside in memory

limit – specifies the length of the segment

Segment-table base register (STBR) points to the segment table’s location in memory

Segment-table length register (STLR) indicates number of segments used by a program;

segment number s is legal if s < STLR

Protection

With each entry in segment table associate:

validation bit = 0 Þ illegal segment

read/write/execute privileges

Protection bits associated with segments; code sharing occurs at segment level

Since segments vary in length, memory allocation is a dynamic storage-allocation

problem A segmentation example is shown in the following diagram

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

81

Segmentation Hardware

Example of Segmentation

Segmentation with paging

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

82

Instead of an actual memory location the segment information includes the address of a page

table for the segment. When a program references a memory location the offset is translated

to a memory address using the page table. A segment can be extended simply by allocating

another memory page and adding it to the segment's page table.

An implementation of virtual memory on a system using segmentation with paging usually

only moves individual pages back and forth between main memory and secondary storage,

similar to a paged non-segmented system. Pages of the segment can be located anywhere in

main memory and need not be contiguous. This usually results in a reduced amount of

input/output between primary and secondary storage and reduced memory fragmentation.

Virtual Memory

Virtual Memory is a space where large programs can store themselves in form of pages

while their execution and only the required pages or portions of processes are loaded into

the main memory. This technique is useful as large virtual memory is provided for user

programs when a very small physical memory is there.

In real scenarios, most processes never need all their pages at once, for following reasons :

 Error handling code is not needed unless that specific error occurs, some of which

are quite rare.

 Arrays are often over-sized for worst-case scenarios, and only a small fraction of the

arrays are actually used in practice.

 Certain features of certain programs are rarely used.

Fig. Diagram showing virtual memory that is larger than physical memory.

Virtual memory is commonly implemented by demand paging. It can also be implemented in a

segmentation system. Demand segmentation can also be used to provide virtual memory.

Benefits of having Virtual Memory :

1. Large programs can be written, as virtual space available is huge compared to

physical memory.

https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Virtual_memory

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

83

2. Less I/O required, leads to faster and easy swapping of processes.

3. More physical memory available, as programs are stored on virtual memory, so they

occupy very less space on actual physical memory.

Demand Paging

A demand paging is similar to a paging system with swapping(Fig 5.2). When we want to execute a

process, we swap it into memory. Rather than swapping the entire process into memory.

When a process is to be swapped in, the pager guesses which pages will be used before the process is

swapped out again Instead of swapping in a whole process, the pager brings only those necessary pages

into memory. Thus, it avoids reading into memory pages that will not be used in anyway, decreasing the

swap time and the amount of physical memory needed.

Hardware support is required to distinguish between those pages that are in memory and those pages

that are on the disk using the valid-invalid bit scheme. Where valid and invalid pages can be checked

checking the bit and marking a page will have no effect if the process never attempts to access the

pages. While the process executes and accesses pages that are memory resident, execution proceeds

normally.

Fig. Transfer of a paged memory to continuous disk space

Access to a page marked invalid causes a page-fault trap. This trap is the result of the operating system's

failure to bring the desired page into memory.

Initially only those pages are loaded which will be required the process immediately.

The pages that are not moved into the memory are marked as invalid in the page table. For

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

84

an invalid entry the rest of the table is empty. In case of pages that are loaded in the

memory, they are marked as valid along with the information about where to find the

swapped out page.

When the process requires any of the page that is not loaded into the memory, a page fault

trap is triggered and following steps are followed,

1. The memory address which is requested by the process is first checked, to verify the

request made by the process.

2. If its found to be invalid, the process is terminated.

3. In case the request by the process is valid, a free frame is located, possibly from a

free-frame list, where the required page will be moved.

4. A new operation is scheduled to move the necessary page from disk to the specified

memory location. (This will usually block the process on an I/O wait, allowing some other

process to use the CPU in the meantime.)

5. When the I/O operation is complete, the process's page table is updated with the

new frame number, and the invalid bit is changed to valid.

Fig. Steps in handling a page fault

6. The instruction that caused the page fault must now be restarted from the beginning.

There are cases when no pages are loaded into the memory initially, pages are only loaded

when demanded by the process by generating page faults. This is called Pure Demand

Paging.

The only major issue with Demand Paging is, after a new page is loaded, the process starts

execution from the beginning. It is not a big issue for small programs, but for larger programs

it affects performance drastically.

What is dirty bit?

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

85

When a bit is modified by the CPU and not written back to the storage, it is called as a dirty

bit. This bit is present in the memory cache or the virtual storage space.

Advantages of Demand Paging:

1. Large virtual memory.

2. More efficient use of memory.

3. Unconstrained multiprogramming. There is no limit on degree of multiprogramming.

Disadvantages of Demand Paging:

1. Number of tables and amount of processor over head for handling page interrupts are greater than in

the case of the simple paged management techniques.

2. due to the lack of an explicit constraints on a jobs address space size.

Page Replacement

As studied in Demand Paging, only certain pages of a process are loaded initially into the

memory. This allows us to get more number of processes into the memory at the same time.

but what happens when a process requests for more pages and no free memory is available

to bring them in. Following steps can be taken to deal with this problem :

1. Put the process in the wait queue, until any other process finishes its execution

thereby freeing frames.

2. Or, remove some other process completely from the memory to free frames.

3. Or, find some pages that are not being used right now, move them to the disk to get free

frames. This technique is called Page replacement and is most commonly used. We have

some great algorithms to carry on page replacement efficiently.

Page Replacement Algorithm

Page replacement algorithms are the techniques using which an Operating System decides

which memory pages to swap out, write to disk when a page of memory needs to be

allocated. Paging happens whenever a page fault occurs and a free page cannot be used for

allocation purpose accounting to reason that pages are not available or the number of free

pages is lower than required pages.

When the page that was selected for replacement and was paged out, is referenced again, it

has to read in from disk, and this requires for I/O completion. This process determines the

quality of the page replacement algorithm: the lesser the time waiting for page-ins, the better

is the algorithm.

A page replacement algorithm looks at the limited information about accessing the pages

provided by hardware, and tries to select which pages should be replaced to minimize the

total number of page misses, while balancing it with the costs of primary storage and

processor time of the algorithm itself. There are many different page replacement

algorithms. We evaluate an algorithm by running it on a particular string of memory

reference and computing the number of page faults,

Reference String

The string of memory references is called reference string. Reference strings are generated

artificially or by tracing a given system and recording the address of each memory reference.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

86

The latter choice produces a large number of data, where we note two things.

 For a given page size, we need to consider only the page number, not the entire address.

 If we have a reference to a page p, then any immediately following references

to page p will never cause a page fault. Page p will be in memory after the first reference; the

immediately following references will not fault.

 For example, consider the following sequence of addresses − 123,215,600,1234,76,96

 If page size is 100, then the reference string is

1,2,6,12,0,0 First In First Out (FIFO) algorithm

 Oldest page in main memory is the one which will be selected for replacement.

 Easy to implement, keep a list, replace pages from the tail and add new pages at

the head.

 Optimal Page algorithm

 An optimal page-replacement algorithm has the lowest page-fault rate of all

algorithms. An optimal page-replacement algorithm exists, and has been called OPT or

MIN.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

87

 Replace the page that will not be used for the longest period of time. Use the time

when a page is to be used.

Least Recently Used (LRU) algorithm

 Page which has not been used for the longest time in main memory is the one

which will be selected for replacement.

 Easy to implement, keep a list, replace pages by looking back into time.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

88

Second chance page replacement algorithm

 Second Chance replacement policy is called the Clock replacement policy...

 In the Second Chance page replacement policy, the candidate pages for removal are consider in a

round robin matter, and a page that has been accessed between consecutive considerations will not be

replaced.

The page replaced is the one that - considered in a round robin matter - has not been accessed since its

last consideration.

 Implementation:

o Add a "second chance" bit to each memory frame.

o Each time a memory frame is referenced, set the "second chance" bit to ONE (1) - this will give the

frame a second chance...

o A new page read into a memory frame has the second chance bit set to ZERO (0)

o When you need to find a page for removal, look in a round robin manner in the memory frames:

 If the second chance bit is ONE, reset its second chance bit (to ZERO) and continue.

 If the second chance bit is ZERO, replace the page in that memory frame.

 The following figure shows the behavior of the program in paging using the Second Chance page

replacement policy:

o We can see notably that the bad replacement decision made by FIFO is not present in Second

chance!!!

o There are a total of 9 page read operations to satisfy the total of 18 page requests - just as good as

the more computationally expensive LRU method !!!

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

89

NRU (Not Recently Used) Page Replacement Algorithm - This algorithm requires that each page

have two additional status bits 'R' and 'M' called reference bit and change bit respectively. The reference

bit(R) is automatically set to 1 whenever the page is referenced. The change bit (M) is set to 1 whenever

the page is modified. These bits are stored in the PMT and are updated on every memory reference.

When a page fault occurs, the memory manager inspects all the pages and divides them into 4 classes

based on R and M bits.

 Class 1: (0,0) − neither recently used nor modified - the best page to replace.

 Class 2: (0,1) − not recently used but modified - the page will need to be written out before

replacement.

 Class 3: (1,0) − recently used but clean - probably will be used again soon.

 Class 4: (1,1) − recently used and modified - probably will be used again, and write out will be

needed before replacing it.

This algorithm removes a page at random from the lowest numbered non-empty class.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

90

UNIT-IV

File Management: Concept of File, Access methods, File types, File operation, Directory structure,

File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit

vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and

performance.

I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O

Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software.

File System

File Concept:

Computers can store information on various storage media such as, magnetic disks,

magnetic tapes, optical disks. The physical storage is converted into a logical storage

unit by operating system. The logical storage unit is called FILE. A file is a collection of

similar records. A record is a collection of related fields that can be treated as a unit by

some application program. A field is some basic element of data. Any individual field

contains a single value. A data base is collection of related data.

Student Marks Marks Fail/Pas

KUMA 85 86 P

LAKSH 93 92 P

DATA FILE

Student name, Marks in sub1, sub2, Fail/Pass is fields. The collection of fields is

called a RECORD. RECORD:

LAKSH 93 92 P

Collection of these records is called a data file.

FILE ATTRIBUTES :

1. Name : A file is named for the convenience of the user and is referred by its

name. A name is usually a string of characters.

2. Identifier : This unique tag, usually a number ,identifies the file within the file system.

3. Type : Files are of so many types. The type depends on the extension of the file.

Example:

.exe Executable file

.obj Object file

.src Source file

4. Location : This information is a pointer to a device and to the location of

the file on that device.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

91

5. Size : The current size of the file (in bytes, words,blocks).

6. Protection : Access control information determines who can do reading,

writing, executing and so on.

7. Time, Date, User identification : This information may be kept for

creation, last modification,last use.

FILE OPERATIONS

1. Creating a file : Two steps are needed to create a file. They are:

 Check whether the space is available ornot.

 If the space is available then made an entry for the new file in the

directory. The entry includes name of the file, path of the file,etc…

2. Writing a file : To write a file, we have to know 2 things. One is name of the

file and second is the information or data to be written on the file, the system searches

the entired given location for the file. If the file is found, the system must keep a write

pointer to the location in the file where the next write is to take place.

3. Reading a file : To read a file, first of all we search the directories for the file, if

the file is found, the system needs to keep a read pointer to the location in the file where

the next read is to take place. Once the read has taken place, the read pointer is updated.

4. Repositioning within a file : The directory is searched for the appropriate

entry and the current file position pointer is repositioned to a given value. This

operation is also called file seek.

5. Deleting a file : To delete a file, first of all search the directory for named

file, then released the file space and erase the directoryentry.

6. Truncating a file : To truncate a file, remove the file contents only but, the

attributes are as itis.

FILE TYPES:The name of the file split into 2 parts. One is name and second is

Extension. The file type is depending on extension of the file.

File Type Extension Purpose

Executable .exe

.com

.bin

Ready to run

(or) ready

to run

machine

Source code .c

.cpp

.asm

Source code in

various

languages.

Object .obj

.o

Compiled,

machine

Batch .bat

.sh

Commands to

the command

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

92

Text .txt

.doc

Textual

data,

docume

nts

Word processor .doc

.wp

.rtf

Various word

proc

essor

form

ats

Library .lib

.dll

Libraries of

routines for

Print or View .pdf

.jpg

Binary file in a

format for

Archive .arc

.zip

Related files

grouped into a

Multimedia .mpeg

.mp3

.avi

Binary file

containing

audio

or audio/video

 FILE STRUCTURE

File types also can be used to indicate the internal structure of the file. The operating

system requires that an executable file have a specific structure so that it can determine

where in memory to load the file and what the location of the first instruction is. If OS

supports multiple file structures, the resulting size of OS is large. If the OS defines 5

different file structures, it needs to contain the code to support these file structures. All

OS must support at least one structure that of an executable file so that the system is able

to load and run programs.

INTERNAL FILE STRUCTURE

In UNIX OS, defines all files to be simply stream of bytes. Each byte is individually

addressable by its offset from the beginning or end of the file. In this case, the logical

record size is 1 byte. The file system automatically packs and unpacks bytes into

physical disk blocks, say 512 bytes per block.

The logical record size, physical block size, packing determines how many logical

records are in each physical block. The packing can be done by the user’s application

program or OS. A file may be considered a sequence of blocks. If each block were 512

bytes, a file of 1949 bytes would be allocated 4 blocks (2048 bytes). The last 99 bytes

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

93

would be wasted. It is called internal fragmentation all file systems suffer from internal

fragmentation, the larger the block size, the greater the internal fragmentation.

FILE ACCESS METHODS

Files stores information, this information must be accessed and read into computer

memory. There are so many ways that the information in the file can be accessed.

1. Sequential file access:

Information in the file is processed in order i.e. one record after the other.

Magnetic tapes are supporting this type of file accessing.

Eg : A file consisting of 100 records, the current position of read/write head is 45th

record, suppose we want to read the 75th record then, it access sequentially from 45,

46, 47

…….. 74, 75. So the read/write head traverse all the records between 45 to 75.

 2. Direct access:

Direct access is also called relative access. Here records can read/write randomly

without any order. The direct access method is based on a disk model of a file, because

disks allow random access to any file block.

Eg : A disk containing of 256 blocks, the position of read/write head is at 95th block. The

block is to be read or write is 250th block. Then we can access the 250th block directly

without any restrictions.

Eg : CD consists of 10 songs, at present we are listening song 3, If we want to listen

song 10, we can shift to 10.

 3. Indexed Sequential File access

The main disadvantage in the sequential file is, it takes more time to access a Record

.Records are organized in sequence based on a key field.

Eg :

A file consisting of 60000 records,the master index divide the total records into 6 blocks,

each block consisiting of a pointer to secondary index.The secondary index divide the

10,000 records into 10 indexes.Each index consisting of a pointer to its orginal

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

94

location.Each record in the index file consisting of 2 field, A key field and a pointer field.

 DIRECTORY STRUCTURE

Sometimes the file system consisting of millions of files,at that situation it is very hard

to manage the files. To manage these files grouped these files and load one group into

one partition.

Each partition is called a directory .a directory structure provides a mechanism for

organizing many files in the file system.

OPERATION ON THE DIRECTORIES :

1. Search for a file : Search a directory structure for requiredfile.

2. createafile : New files need to be created, added to thedirectory.

3. Deleteafile : When a file is no longer needed,we want to remove it fromthe

directory.

4. List adirectory : We can know the list of files in thedirectory.

5. Renameafile : When ever we need to change the name of the file,wecanchange

thename.

6. Traverse the file system : We need to access every directory and every file

with in a directory structure we can traverse the file system

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

95

 The various directory structures

1. Single level directory:

The directory system having only one directory,it consisting of

all files some times it is said to be root directory.

E.g :- Here directory containing 4 files (A,B.C,D).the advantage of the scheme

is its simplicity and the ability to locate files quickly.The problem is different

users may accidentally use the same names for their files.

E.g :- If user 1 creates a files caled sample and then later user 2 to creates a file

called sample,then user2’s file will overwrite user 1 file.Thats why it is not used

in the multi user system.

2. Two level directory:

The problem in single level directory is different user may be accidentally use

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

96

the same name for their files. To avoid this problem each user need a private

directory,

Names chosen by one user don't interfere with names chosen by a different

user.

Root directory is the first level directory.user 1,user2,user3 are user level of

directory A,B,C are files.

3. Tree structured directory:

Two level directory eliminates name conflicts among users but it is not

satisfactory for users with a large number of files.To avoid this create the sub-

directory and load the same type of files into the sub-directory.so, here each can

have as many directories are needed.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

97

There are 2 types of path

1. Absoulte path

2. Relative path

Absoulte path : Begging with root and follows a path down to specified

files giving directory, directory name on the path.

Relative path : A path from current directory.

4. Acyclic graphdirectory

Multiple users are working on a project, the project files can be stored in a

comman sub-directory of the multiple users. This type of directory is called

acyclic graph directory .The common directory will be declared a shared

directory. The graph contain no cycles with shared files, changes made by one

user are made visible to other users.A file may now have multiple absolute paths.

when shared directory/file is deleted, all pointers to the directory/ files also to be

removed.

5. General graph directory:

When we add links to an existing tree structured directory, the tree

structure is destroyed, resulting is a simple graph structure.

Advantages :- Traversing is easy. Easy sharing is possible.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

98

File system structure:

Disk provides the bulk of secondary storage on which a file system is maintained.

They have 2 characteristics that make them a convenient medium for storing

multiple files.

1. A disk can be rewritten in place. It is possible to read a block from

the disk, modify the block, and write it back into same place.

2. A disk can access directly any block of information it contains.

I/O Control: consists of device drivers and interrupt handlers to transfer

information between the main memory and the disk system. The device driver

writes specific bit patterns to special locations in the I/O controller’s memory to

tell the controller which device location to act on and what actions to take.

The Basic File System needs only to issue commands to the appropriate device

driver to read and write physical blocks on the disk. Each physical block is

identified by its numeric disk address (Eg. Drive 1, cylinder 73, track2, sector

10).

The File Organization Module knows about files and their logical blocks and

physical blocks. By knowing the type of file allocation used and the location of

the file, file organization module can translate logical block address to physical

addresses for the basic file system to transfer. Each file’s logical blocks are

numbered from 0 to n. so, physical blocks containing the data usually do not

match the logical numbers. A translation is needed to locate each block.

Devices

I/O Control

Basic File System

File Organisation Module

Logical File System

Application Programs

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

99

The Logical File System manages all file system structure except the actual data

(contents of file). It maintains file structure via file control blocks. A file control

block (inode in Unix file systems) contains information about the file, ownership,

permissions, location of the file contents.

File System Implementation:

Overview:

A Boot Control Block (per volume) can contain information needed by the system

to boot an OS from that volume. If the disk does not contain an OS, this block can

be empty.

A Volume Control Block (per volume) contains volume (or partition) details, such

as number of blocks in the partition, size of the blocks, a free block, count and

free block pointers, free FCB count, FCB pointers.

A Typical File Control Block

A Directory Structure (per file system) is used to organize the files. A PER-FILE

FCB contains many details about the file.

A file has been created; it can be used for I/O. First, it must be opened. The open()

call passes a file name to the logical file system. The open() system call First

searches the system wide open file table to see if the file is already in use by another

process. If it is ,a per process open file table entry is created pointing to the existing

system wide open file table. If the file is not already open, the directory structure is

searched for the given file name. Once the file is found, FCB is copied into a system

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

100

wide open file table in memory. This table not only stores the FCB but also tracks

the number of processes that have the file open.

Next, an entry is made in the per – process open file table, with the pointer to the

entry in the system wide open file table and some other fields. These are the fields

include a pointer to the current location in the file (for the next read/write operation)

and the access mode in which the file is open. The open () call returns a pointer to

the appropriate entry in the per-process file system table. All file operations are

preformed via this pointer. When a process closes the file the per- process table

entry is removed. And the system wide entry open count is decremented. When all

users that have opened the file close it, any updated metadata is copied back to the

disk base directory structure. System wide open file table entry is removed.

System wide open file table contains a copy of the FCB of each open

file, other information. Per process open file table, contains a pointer

to the appropriate entry in the system wide open file

table, other information.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

101

Allocation Methods – Contiguous

An allocation method refers to how disk blocks are allocated for files:

Contiguous allocation – each file occupies set of contiguous blocks o Best

performance in most cases

o Simple – only starting location (block #) and length (number of blocks) are required

o Problems include finding space for file, knowing file size, external

fragmentation, need for compaction off-line (downtime) or on-line

Linked

Linked allocation – each file a linked list

of blocks o File ends at nil pointer

o No external fragmentation

o Each block contains pointer to next block

o No compaction, external fragmentation

o Free space management system called when new block needed

o Improve efficiency by clustering blocks into groups but

increases internal fragmentation

o Reliability can be a problem

o Locating a block can take many I/Os

and disk seeks FAT (File Allocation

Table) variation

o Beginning of volume has table, indexed by block number

o Much like a linked list, but faster on disk and cacheable

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

102

File-Allocation Table

Indexed allocation

o Each file has its own index block(s) of pointers to its data blocks

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

103

Free-Space Management

File system maintains free-space list to track available

blocks/clusters Linked list (free list)

o Cannot get contiguous space easily

o No waste of space

o No need to traverse the entire list

1. Bitmap or Bit vector –

A Bitmap or Bit Vector is series or collection of bits where each bit corresponds to a disk block. The bit

can take two values: 0 and 1: 0 indicates that the block is allocated and 1 indicates a free block.

The given instance of disk blocks on the disk in Figure 1 (where green blocks are allocated) can be

represented by a bitmap of 16 bits as: 0000111000000110.

Advantages –
 Simple to understand.

 Finding the first free block is efficient. It requires scanning the words (a group of 8 bits) in a bitmap

for a non-zero word. (A 0-valued word has all bits 0). The first free block is then found by scanning for

the first 1 bit in the non-zero word.

Linked Free Space List on Disk

In this approach, the free disk blocks are linked together i.e. a free block contains a pointer to the next

free block. The block number of the very first disk block is stored at a separate location on disk and is

also cached in memory.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

104

Grouping

Modify linked list to store address of next n-1 free blocks in first free block, plus

a pointer to next block that contains free-block-pointers (like this one).

An advantage of this approach is that the addresses of a group of free disk blocks

can be found easily

Counting

Because space is frequently contiguously used and freed, with contiguous- allocation

allocation, extents, or clustering.

Keep address of first free block and count of following free blocks. Free space list

then has entries containing addresses and counts.

Directory Implementation

1. Linear List

In this algorithm, all the files in a directory are maintained as singly lined list. Each file contains the

pointers to the data blocks which are assigned to it and the next file in the directory.

Characteristics

1. When a new file is created, then the entire list is checked whether the new file name is matching to a

existing file name or not. In case, it doesn't exist, the file can be created at the beginning or at the end.

Therefore, searching for a unique name is a big concern because traversing the whole list takes time.

2. The list needs to be traversed in case of every operation (creation, deletion, updating, etc) on the

files therefore the systems become inefficient.

2. Hash Table

To overcome the drawbacks of singly linked list implementation of directories, there is an alternative

approach that is hash table. This approach suggests to use hash table along with the linked lists.

A key-value pair for each file in the directory gets generated and stored in the hash table. The key can

be determined by applying the hash function on the file name while the key points to the corresponding

file stored in the directory.

Now, searching becomes efficient due to the fact that now, entire list will not be searched on every

operating. Only hash table entries are checked using the key and if an entry found then the

corresponding file will be fetched using the value.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

105

Efficiency and Performance

Efficiency dependent on:

● Disk allocation and directory algorithms

● Types of data kept in file’s directory entry

 Performance

● Disk cache – separate section of main memory for frequently used blocks

● free-behind and read-ahead – techniques to optimize sequential access

● improve PC performance by dedicating section of memory as virtual disk, or RAM disk

I/O Hardware: I/O devices

Input/output devices are the devices that are responsible for the input/output operations in a computer

system.

Basically there are following two types of input/output devices:

 Block devices

 Character devices

Block Devices

A block device stores information in block with fixed-size and own-address.

It is possible to read/write each and every block independently in case of block device.

In case of disk, it is always possible to seek another cylinder and then wait for required block to rotate

under head without mattering where the arm currently is. Therefore, disk is a block addressable device.

Character Devices

A character device accepts/delivers a stream of characters without regarding to any block structure.

Character device isn't addressable.

Character device doesn't have any seek operation.

There are too many character devices present in a computer system such as printer, mice, rats, network

interfaces etc. These four are the common character devices.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

106

Device Controllers

Device drivers are software modules that can be plugged into an OS to handle a particular device.

Operating System takes help from device drivers to handle all I/O devices.

The Device Controller works like an interface between a device and a device driver. I/O units

(Keyboard, mouse, printer, etc.) typically consist of a mechanical component and an electronic

component where electronic component is called the device controller.

There is always a device controller and a device driver for each device to communicate with the

Operating Systems. A device controller may be able to handle multiple devices. As an interface its

main task is to convert serial bit stream to block of bytes, perform error correction as necessary.

Any device connected to the computer is connected by a plug and socket, and the socket is connected to

a device controller. Following is a model for connecting the CPU, memory, controllers, and I/O devices

where CPU and device controllers all use a common bus for communication.

Synchronous vs asynchronous I/O

 Synchronous I/O − In this scheme CPU execution waits while I/O proceeds

 Asynchronous I/O − I/O proceeds concurrently with CPU execution

Communication to I/O Devices

The CPU must have a way to pass information to and from an I/O device. There are three approaches

available to communicate with the CPU and Device.

 Special Instruction I/O

 Memory-mapped I/O

 Direct memory access (DMA)

Special Instruction I/O

This uses CPU instructions that are specifically made for controlling I/O devices. These instructions

typically allow data to be sent to an I/O device or read from an I/O device.

Memory-mapped I/O

When using memory-mapped I/O, the same address space is shared by memory and I/O devices. The

device is connected directly to certain main memory locations so that I/O device can transfer block of

data to/from memory without going through CPU.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

107

While using memory mapped IO, OS allocates buffer in memory and informs I/O device to use that

buffer to send data to the CPU. I/O device operates asynchronously with CPU, interrupts CPU when

finished.

The advantage to this method is that every instruction which can access memory can be used to

manipulate an I/O device. Memory mapped IO is used for most high-speed I/O devices like disks,

communication interfaces.

Direct Memory Access (DMA)

Slow devices like keyboards will generate an interrupt to the main CPU after each byte is transferred. If

a fast device such as a disk generated an interrupt for each byte, the operating system would spend most

of its time handling these interrupts. So a typical computer uses direct memory access (DMA) hardware

to reduce this overhead.

Direct Memory Access (DMA) means CPU grants I/O module authority to read from or write to

memory without involvement. DMA module itself controls exchange of data between main memory

and the I/O device. CPU is only involved at the beginning and end of the transfer and interrupted only

after entire block has been transferred.

Direct Memory Access needs a special hardware called DMA controller (DMAC) that manages the

data transfers and arbitrates access to the system bus. The controllers are programmed with source and

destination pointers (where to read/write the data), counters to track the number of transferred bytes,

and settings, which includes I/O and memory types, interrupts and states for the CPU cycles.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

108

The operating system uses the DMA hardware as follows −

Step Description

1 Device driver is instructed to transfer disk data to a buffer address X.

2 Device driver then instruct disk controller to transfer data to buffer.

3 Disk controller starts DMA transfer.

4 Disk controller sends each byte to DMA controller.

5 DMA controller transfers bytes to buffer, increases the memory address,

decreases the counter C until C becomes zero.

6 When C becomes zero, DMA interrupts CPU to signal transfer

completion.

I/O software is often organized in the following layers −

 User Level Libraries − This provides simple interface to the user program to perform input and

output. For example, stdio is a library provided by C and C++ programming languages.

 Kernel Level Modules − This provides device driver to interact with the device controller and

device independent I/O modules used by the device drivers.

 Hardware − This layer includes actual hardware and hardware controller which interact with the

device drivers and makes hardware alive.

A key concept in the design of I/O software is that it should be device independent where it should be

possible to write programs that can access any I/O device without having to specify the device in

advance. For example, a program that reads a file as input should be able to read a file on a floppy disk,

on a hard disk, or on a CD-ROM, without having to modify the program for each different device.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

109

Device Drivers

Device drivers are software modules that can be plugged into an OS to handle a particular device.

Operating System takes help from device drivers to handle all I/O devices. Device drivers encapsulate

device-dependent code and implement a standard interface in such a way that code contains device-

specific register reads/writes. Device driver, is generally written by the device's manufacturer and

delivered along with the device on a CD-ROM.

A device driver performs the following jobs −

 To accept request from the device independent software above to it.

 Interact with the device controller to take and give I/O and perform required error handling

 Making sure that the request is executed successfully

How a device driver handles a request is as follows: Suppose a request comes to read a block N. If the

driver is idle at the time a request arrives, it starts carrying out the request immediately. Otherwise, if

the driver is already busy with some other request, it places the new request in the queue of pending

requests.

Interrupt handlers

An interrupt handler, also known as an interrupt service routine or ISR, is a piece of software or more

specifically a callback functions in an operating system or more specifically in a device driver, whose

execution is triggered by the reception of an interrupt.

When the interrupt happens, the interrupt procedure does whatever it has to in order to handle the

interrupt, updates data structures and wakes up process that was waiting for an interrupt to happen.

The interrupt mechanism accepts an address ─ a number that selects a specific interrupt handling

routine/function from a small set. In most architecture, this address is an offset stored in a table called

the interrupt vector table. This vector contains the memory addresses of specialized interrupt handlers.

Device-Independent I/O Software

The basic function of the device-independent software is to perform the I/O functions that are common

to all devices and to provide a uniform interface to the user-level software. Though it is difficult to

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

110

write completely device independent software but we can write some modules which are common

among all the devices. Following is a list of functions of device-independent I/O Software −

 Uniform interfacing for device drivers

 Device naming - Mnemonic names mapped to Major and Minor device numbers

 Device protection

 Providing a device-independent block size

 Buffering because data coming off a device cannot be stored in final destination.

 Storage allocation on block devices

 Allocation and releasing dedicated devices

 Error Reporting

User-Space I/O Software

These are the libraries which provide richer and simplified interface to access the functionality of the

kernel or ultimately interactive with the device drivers. Most of the user-level I/O software consists of

library procedures with some exception like spooling system which is a way of dealing with dedicated

I/O devices in a multiprogramming system.

I/O Libraries (e.g., stdio) are in user-space to provide an interface to the OS resident device-

independent I/O SW. For example putchar(), getchar(), printf() and scanf() are example of user level

I/O library stdio available in C programming.

Kernel I/O Subsystem

Kernel I/O Subsystem is responsible to provide many services related to I/O. Following are some of the

services provided.

 Scheduling − Kernel schedules a set of I/O requests to determine a good order in which to execute

them. When an application issues a blocking I/O system call, the request is placed on the queue for that

device. The Kernel I/O scheduler rearranges the order of the queue to improve the overall system

efficiency and the average response time experienced by the applications.

 Buffering − Kernel I/O Subsystem maintains a memory area known as buffer that stores data while

they are transferred between two devices or between a device with an application operation. Buffering

is done to cope with a speed mismatch between the producer and consumer of a data stream or to adapt

between devices that have different data transfer sizes.

 Caching − Kernel maintains cache memory which is region of fast memory that holds copies of

data. Access to the cached copy is more efficient than access to the original.

 Spooling and Device Reservation − A spool is a buffer that holds output for a device, such as a

printer, that cannot accept interleaved data streams. The spooling system copies the queued spool files

to the printer one at a time. In some operating systems, spooling is managed by a system daemon

process. In other operating systems, it is handled by an in kernel thread.

 Error Handling − An operating system that uses protected memory can guard against many kinds

of hardware and application errors.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

111

UNIT-V

Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention,

Deadlock Avoidance: Banker’s algorithm, Deadlock detection and Recovery.

Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk

reliability, Disk formatting, Boot-block, Bad blocks.

DEADLOCKS

System model:

A system consists of a finite number of resources to be distributed among a number of competing

processes. The resources are partitioned into several types, each consisting of some number of

identical instances. Memory space, CPU cycles, files, I/O devices are examples of resource types.

If a system has 2 CPUs, then the resource type CPU has 2 instances.

A process must request a resource before using it and must release the resource after using it. A

process may request as many resources as it requires to carry out its task. The number of

resources as it requires to carry out its task. The number of resources requested may not exceed

the total number of resources available in the system. A process cannot request 3 printers if the

system has only two.

A process may utilize a resource in the following sequence:

(I) REQUEST: The process requests the resource. If the request cannot be granted immediately

(if the resource is being used by another process), then therequesting process must wait until it can

acquire theresource.

(II) USE: The process can operate on the resource .if the resource is a printer, the process can

print on theprinter.

(III) RELEASE: The process release theresource.

For each use of a kernel managed by a process the operating system checks that the process has

requested and has been allocated the resource. A system table records whether each resource is

free (or) allocated. For each resource that is allocated, the table also records the process to which

it is allocated. If a process requests a resource that is currently allocated to another process, it can

be added to a queue of processes waiting for this resource.

To illustrate a deadlocked state, consider a system with 3 CDRW drives. Each of 3 processes holds

one of these CDRW drives. If each process now requests another drive, the 3 processes will be in a

deadlocked state. Each is waiting for the event “CDRW is released” which can be caused only by

one of the other waiting processes. This example illustrates a deadlock involving the same resource

type.

Deadlocks may also involve different resource types. Consider a system with one printer and one

DVD drive. The process Pi is holding the DVD and process Pj is holding the printer. If Pi requests

the printer and Pj requests the DVD drive, a deadlock occurs.

DEADLOCK CHARACTERIZATION:

In a deadlock, processes never finish executing, and system resources are tied up, preventing other

jobs from starting.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

112

NECESSARY CONDITIONS:

A deadlock situation can arise if the following 4 conditions hold simultaneously in a system:

1. MUTUAL EXCLUSION: Only one process at a time can use the resource. If another

process requests that resource, the requesting process must be delayed until theresource has

beenreleased.

2. HOLD AND WAIT: A process must be holding at least one resource and waitingto

acquire additional resources that are currently being held by otherprocesses.

3. NO PREEMPTION: Resources cannot be preempted. A resource can be released only

voluntarily by the process holding it, after that process has completed itstask.

4. CIRCULAR WAIT: A set {P0,P1,…..Pn} of waiting processes must exist such that P0 is

waiting for resource held by P1, P1 is waiting for a resource held by P2,……,Pn-1 is waiting for

a resource held by Pn and Pn is waiting for a resource held byP0.

RESOURCE ALLOCATION GRAPH

Deadlocks can be described more precisely in terms of a directed graph called a system resource

allocation graph. This graph consists of a set of vertices V and a set of edges E. the set of vertices

V is partitioned into 2 different types of nodes:

P = {P1, P2….Pn}, the set consisting of all the active processes in the system. R= {R1,

R2….Rm}, the set consisting of all resource types in the system.

A directed edge from process Pi to resource type Rj is denoted by Pi ->Rj. It signifies that process

Pi has requested an instance of resource type Rj and is currently waiting for that resource.

A directed edge from resource type Rj to process Pi is denoted by Rj ->Pi, it signifies that

an instance of resource type Rj has been allocated to process Pi.

A directed edge Pi ->Rj is called a requested edge. A directed edge

Rj->Piis called an assignmentedge.

We represent each process Pi as a circle, each resource type Rj as a rectangle. Since resource type

Rj may have more than one instance. We represent each such instance as a dot within the

rectangle. A request edge points to only the rectangle Rj. An assignment edge must also designate

one of the dots in therectangle.

When process Pi requests an instance of resource type Rj, a request edge is inserted in the resource

allocation graph. When this request can be fulfilled, the request edge is instantaneously

transformed to an assignment edge. When the process no longer needs access to the resource, it

releases the resource, as a result, the assignment edge is deleted.

The sets P, R, E:

P= {P1, P2, P3}

R= {R1, R2, R3, R4}

E= {P1 ->R1, P2 ->R3, R1 ->P2, R2 ->P2, R2 ->P1, R3 ->P3}

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

113

One instance of resource type R1

Two instances of resource type R2

One instance of resource type R3

Three instances of resource type R4

PROCESS STATES:

Process P1 is holding an instance of resource type R2 and is waiting for an instance of resource

type R1.

Process P2 is holding an instance of R1 and an instance of R2 and is waiting for instance of R3.

Process P3 is holding an instance of R3.

If the graph contains no cycles, then no process in the system is deadlocked. If

the graph does contain a cycle, then a deadlock may exist.

Suppose that process P3 requests an instance of resource type R2. Since no resource instance is

currently available, a request edge P3 ->R2 is added to the graph.

2 cycles:

P1 ->R1 ->P2 ->R3 ->P3 ->R2 ->P1

P2 ->R3 ->P3 ->R2 ->P2

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

114

Processes P1, P2, P3 are deadlocked. Process P2 is waiting for the resource R3, which is held by

process P3.process P3 is waiting for either process P1 (or) P2 to release resource R2. In addition,

process P1 is waiting for process P2 to release resource R1.

We also have a cycle: P1 ->R1 ->P3 ->R2 ->P1

However there is no deadlock. Process P4 may release its instance of resource type R2. That

resource can then be allocated to P3, breaking the cycle.

DEADLOCK PREVENTION

For a deadlock to occur, each of the 4 necessary conditions must held. By ensuring that at least

one of these conditions cannot hold, we can prevent the occurrence of a deadlock.

Mutual Exclusion – not required for sharable resources; must hold for non

sharable resources

Hold and Wait – must guarantee that whenever a process requests a resource,

it does not hold any other resources

o Require process to request and be allocated all its resources

before it begins execution, or allow process to request resources only

when the process has none

o Low resource utilization; starvation possible

No Preemption –

o If a process that is holding some resources requests another resource

that cannot be immediately allocated to it, then all resources currently

being held are released

o Preempted resources are added to the list of resources for which

the process is waiting

o Process will be restarted only when it can regain its old resources, as

well as the new ones that it is requesting

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

115

Circular Wait – impose a total ordering of all resource types, and require that

each process requests resources in an increasing order of enumeration

Deadlock Avoidance

Requires that the system has some additional a priori information available

 Simplest and most useful model requires that each process declare the maximum number

of resources of each type that it may need

 The deadlock-avoidance algorithm dynamically examines the resource-

allocation state to ensure that there can never be a circular-wait condition

 Resource-allocation state is defined by the number of available and allocated

resources, and the maximum demands of the processes .

Safe State

 When a process requests an available resource, system must decide if

immediate allocation leaves the system in a safe state

System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL

the processes in the systems such that for each Pi, the resources that Pi can

still request can be satisfied by currently available resources + resources

held by all the Pj, with j <I

That is:

o If Pi resource needs are not immediately available, then Pi can wait until all

Pj have finished

o When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate

o When Pi terminates, Pi +1 can obtain its needed

resources, and so on If a system is in safe state no deadlocks

If a system is in unsafe state possibility of deadlock

Avoidance ensure that a system will never enter an unsafe state

Avoidance algorithms

Single instance of a resource type

o Use a resource-allocation graph Multiple instances of a resource type

o Use the banker’s algorithm

Resource-Allocation Graph Scheme

Claim edgePiÆRj indicated that process Pj may request resource Rj;

represented by a dashed line

Claim edge converts to request edge when a process requests a resource

Request edge converted to an assignment edge when the resource is allocated

to the process When a resource is released by a process, assignment edge

reconverts to a claim edge Resources must be claimed a priori in the system

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

116

Unsafe State In Resource-Allocation Graph

Banker’s Algorithm

Multiple instances

Each process must a priori claim maximum use

When a process requests a resource it may have to wait

When a process gets all its resources it must return them in a finite

amount of time Let n = number of processes, and m = number of

resources types.

Available: Vector of length m. If available [j] = k, there are k instances of resource type

Rjavailable

Max: n x m matrix. If Max [i,j] = k, then process Pimay request at most k

instances of resource type Rj

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently

allocated k instances of Rj

Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of

Rjto complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,

respectively. Initialize: Work = Available

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

117

Finish [i] = false fori = 0, 1, …,n- 1

2. Find an isuch that both:

(a) Finish [i] = false

(b) Needi=Work

If no such iexists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true

go to step 2

4. IfFinish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti[j] = k then process Pi wants

k instances of resource type Rj

1. If Requesti£Needigo to step 2. Otherwise, raise error condition,

since process has exceeded its maximum claim

2. If Requesti£Available, go to step 3. Otherwise Pi must wait, since

resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available – Request;

Allocationi= Allocationi + Requesti;

Needi=Needi – Requesti;

o If safe the resources are allocated to Pi

o If unsafe Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm(REFER CLASS NOTES)

consider 5 processes P0 through P4; 3 resource

types:

A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

Allocation Max Available

 A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Σ The content of the matrix Need is defined to be Max

– Allocation Need

A B C

The system is in a safe state since the sequence <P1, P3, P4, P2, P0>

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

118

satisfies safety criteria

P1 Request (1,0,2)

Check that Request £ Available (that is, (1,0,2) £ (3,3,2) true

Allocatio

n

Need Available

 A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety requirement

Deadlock Detection

Allow system to enter deadlock state

Detection algorithm

Recovery scheme

Single Instance of Each Resource Type

Maintain wait-for graph

Nodes are processes PiÆP

jif Piis waiting forPj

Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle,

there exists a deadlock

An algorithm to detect a cycle in a graph requires an order of n2 operations,

where n is the number of vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

119

Several Instances of a Resource Type

Available: A vector of length m indicates the number of available resources

of each type. Allocation: An n x m matrix defines the number of resources

of each type currently allocated to each process.

Request: An n x m matrix indicates the current request of each process.

If Request [i][j] = k, then process Pi is requesting k more instances of resource type.Rj.

Detection Algorithm

Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationiπ 0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index isuch that both:

(a) Finish[i] == false

(b) Requesti£Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true

go to step 2

4. If Finish[i] == false, for some i, 1 £i£n, then the system is in deadlock state. Moreover, if

Finish[i] == false, then Pi is deadlocked

Recovery from Deadlock:

Process Termination

Abort all deadlocked processes

Abort one process at a time until the deadlock cycle

is eliminated In which order should we choose to

abort?

o Priority of the process

o How long process has computed, and how much longer to completion

o Resources the process has used

o Resources process needs to complete

o How many processes will need to be terminated

o Is process interactive or batch?

Resource Preemption

Selecting a victim – minimize cost

Rollback – return to some safe state, restart process for that state

Starvation – same process may always be picked as victim, include number

of rollback in cost factor

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

120

Secondary storage structure:

Overview of mass storage structure

Magnetic disks: Magnetic disks provide the bulk of secondary storage for modern

computer system. Each disk platter has a flat circular shape, like a CD. Common platter

diameters range from 1.8 to 5.25 inches. The two surfaces of a platter are covered with

a magnetic material. We store information by it magnetically on the platters.

Moving head disk mechanism

A read /write head files just above each surface of every platter. The heads are attached

to a disk arm that moves all the heads as a unit. The surface of a platter is logically

divided into circular tracks, which are sub divided into sectors. The set of tracks that

are at one arm position makes up a cylinder. There may be thousands of concentric

cylinders in a disk drive, and each track may contain hundreds of sectors.

When the disk in use, a driver motor spins it at high speed. Most drivers rotate 60 to

200 times per second. Disk speed has 2 parts. The transfer rate is the at which data

flow between the drive and the computer. To read/write, the head must be positioned

at the desired track and at the beginning of the desired sector on the track, the time it

takes to position the head at the desired track is called seek time. Once the track is

selected the disk controller waits until desired sector reaches the read/write head. The

time it takes to reach the desired sector is called latency time or rotational dealy-

access time. When the desired sector reached the read/write head, then the real data

transferring starts.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

121

A disk can be removable. Removable magnetic disks consist of one platter, held in a

plastic case to prevent damage while not in the disk drive. Floppy disks are in

expensive removable magnetic disks that have a soft plastic case containing a flexible

platter. The storage capacity of a floppy disk is 1.44MB.

A disk drive is attached to a computer by a set of wires called an I/O bus. The data

transfer on a bus are carried out by special processors called controllers. The host

controller is the controller at the computer end of the bus. A disk controller is built

into each disk drive . to perform i/o operation, the host controller operates the disk

drive hardware to carry out the command. Disk controllers have built in cache, data

transfer at the disk drive happens b/w cache and disk surface. Data transfer at the host,

occurs b/w cache and host controller.

Magnetic Tapes: magnetic tapes was used as an early secondary storage medium. It is

permanent and can hold large amount of data. It access time is slow compared to main

memory and magnetic disks. Tapes are mainly used for back up, for storage of

infrequently used information. Typically they store 20GB to 200GB.

Disk Structure: most disks drives are addressed as large one dimensional arrays of

logical blocks. The one dimensional array of logical blocks is mapped onto the

sectors of the disk sequentially. sector 0 is the fist sector of the first track on the

outermost cylinder. The mapping proceeds in order through that track, then through

the rest of the tracks in that cylinder, and then through the rest of the cylinder from

outermost to inner most. As we move from outer zones to inner zones, the number of

sectors per track decreases. Tracks in outermost zone hold 40% more sectors then

innermost zone. The number of sectors per track has been increasing as disks

technology improves, and the outer zone of a disk usually has several hundred sectors

per track. Similarly, the number of cylinders per disk has been increasing; large disks

have tens of thousands of cylinders.

Disk attachment

Computer access disk storage is 2 ways.

1. Via I/O ports(host attachedstorage)

2. Via a remote host in a distributed file system(network attachedstorage).

1 .Host attached storage : host attached storage are accessed via local I/O ports. The

desktop pc uses an I/O bus architecture called IDE. This architecture supports

maximum of 2 drives per I/O bus. High end work station and servers use SCSI and

FC.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

122

NAS CLIENT

CLIENT
LAN/WAN

NAS

SCSI is an bus architecture which have large number of conductor’s in a ribbon cable

(50 or 68) scsi protocol supports maximum of 16 drives an bus. Host consists of a

controller card (SCSI Initiator) and upto 15 storage device called SCSI targets.

Fc(fiber channel) is the high speed serial architecture. It operates mostly on optical

fiber (or) over 4 conductor copper cable. It has 2 variants. One is a large switched

fabric having a 24-bit address space. The other is an (FC-AL) arbitrated loop that

can address 126 devices.

A wide variety of storage devices are suitable for use as host attached.(hard disk,cd

,dvd,tape devices)

2. Network-attached storage: A(NAS) is accessed remotely over a data network

.clients access network attached storage via remote procedure calls. The rpc are

carried via tcp/udp over an ip network-usually the same LAN that carries all data

traffic to theclients.

NAS provides a convenient way for all the computers on a LAN to share a pool of

storage with the same ease of naming and access enjoyed with local host attached

storage .but it tends to be less efficient and have lower performance than direct

attached storage.

3. Storage area network: The drawback of network attached storage(NAS) is

storage I/O operations consume bandwidth on the data network. The

communication b/w servers and clients competes for bandwidth with the

communication among servers and storagedevices.

A storage area network(SAN) is a private network using storage protocols connecting servers and

storage units. The power of a SAN is its flexibility. multiple hosts and multiple storage arrays can

attach to the same SAN, and storage can be dynamically allocated to hosts. SANs make it possible

for clusters of server to share the same storage

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

123

Disk Scheduling Algorithms

Disk scheduling algorithms are used to allocate the services to the I/O requests on the

disk . Since seeking disk requests is time consuming, disk scheduling algorithms try to

minimize this latency. If desired disk drive or controller is available, request is served

immediately. If busy, new request for service will be placed in the queue of pending

requests. When one request is completed, the Operating System has to choose which

pending request to service next. The OS relies on the type of algorithm it needs when

dealing and choosing what particular disk request is to be processed next. The

objective of using these algorithms is keeping Head movements to the amount as

possible. The less the head to move, the faster the seek time will be. To see how it

works, the different disk scheduling algorithms will be discussed and examples are also

provided for better understanding on these different algorithms.

1. First Come First Serve(FCFS)

It is the simplest form of disk scheduling algorithms. The I/O requests are served or

processes according to their arrival. The request arrives first will be accessed and

served first. Since it follows the order of arrival, it causes the wild swings from the

innermost to the outermost tracks of the disk and vice versa . The farther the location

of the request being serviced by the read/write head from its current location, the

higher the seek time will be.

Example: Given the following track requests in the disk queue, compute for the

Total Head Movement (THM) of the read/write head :

95, 180, 34, 119, 11, 123, 62, 64

Consider that the read/write head is positioned at location 50. Prior to this track location

199 was serviced. Show the total head movement for a 200 track disk (0-199).

Solution:

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

124

Total Head Movement Computation: (THM) =

(180 - 50) + (180-34) + (119-34) + (119-11) + (123-11) + (123-62) + (64-62) =

130 + 146 + 85 + 108 + 112 + 61 + 2 (THM) = 644 tracks

Assuming a seek rate of 5 milliseconds is given, we compute for the seek time

using the formula: Seek Time = THM * Seek rate

=644 * 5 ms

 Seek Time = 3,220 ms.

2. Shortest Seek Time First(SSTF):

This algorithm is based on the idea that that he R/W head should proceed to the track

that is closest to its current position . The process would continue until all the track

requests are taken care of. Using the same sets of example in FCFS the solution are as

follows:

Solution:

(THM) = (64-50) + (64-11) + (180-11) =

14 + 53 + 169 (THM) = 236 tracks

Seek Time = THM * Seek rate

= 236 * 5ms

 Seek Time = 1,180 ms

In this algorithm, request is serviced according to the next shortest distance. Starting at

50, the next shortest distance would be 62 instead of 34 since it is only 12 tracks away

from 62 and 16 tracks away from 34 . The process would continue up to the last track

request. There are a total of 236 tracks and a seek time of 1,180 ms, which seems to be

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

125

a better service compared with FCFS which there is a chance that starvation3 would

take place. The reason for this is if there were lots of requests closed to each other, the

other requests will never be handled since the distance will always be greater.

3. SCAN Scheduling Algorithm

This algorithm is performed by moving the R/W head back-and-forth to the innermost

and outermost track. As it scans the tracks from end to end, it process all the requests

found in the direction it is headed. This will ensure that all track requests, whether in

the outermost, middle or innermost location, will be traversed by the access arm

thereby finding all the requests. This is also known as the Elevator algorithm. Using the

same sets of example in FCFS the solution are as follows:

Solution:

This algorithm works like an elevator does. In the algorithm example, it scans down

towards the nearest end and when it reached the bottom it scans up servicing the

requests that it did not get going down. If a request comes in after it has been

scanned, it will not be serviced until the process comes back down or moves back up.

This process moved a total of 230 tracks and a seek time of 1,150. This is optimal

than the previous algorithm.

4 .Circular SCAN (C-SCAN)Algorithm

This algorithm is a modified version of the SCAN algorithm. C-SCAN sweeps the

disk from end-to-end, but as soon it reaches one of the end tracks it then moves to the

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

126

other end track without servicing any requesting location. As soon as it reaches the

other end track it then starts servicing and grants requests headed to its direction. This

algorithm improves the unfair situation of the end tracks against the middle tracks.

Using the same sets of example in FCFS the solution are as

follows:

Notice that in this example an alpha3 symbol (α) was used to represent the dash line.

This return sweeps is sometimes given a numerical value which is included in the

computation of the THM . As analogy, this can be compared with the carriage return

lever of a typewriter. Once it is pulled to the right most direction, it resets the typing

point to the leftmost margin of the paper . A typist is not supposed to type during the

movement of the carriage return lever because the line spacing is being adjusted . The

frequent use of this lever consumes time, same with the time consumed when the R/W

head is reset to its starting position.

Assume that in this example, α has a value of 20ms, the computation

would be as follows: (THM) = (50-0) + (199-62) + α

= 50 + 137 + 20 (THM)

= 207 tracks

Seek Time = THM * Seek rate

= 187 * 5ms Seek Time = 935 ms .

The computation of the seek time excluded the alpha value because it is not an actual

seek or search of a disk request but a reset of the access arm to the starting position .

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

127

Disk management

Disk formatting: A magnetic disk is a blank slate. It is just a platter of a magnetic

recording material. before a disk can store data , it must be divided into sectors that

the disk controller can read and write. This process is called low level formatting

(or)physical formatting. low level formatting fills the disk with a special data structure

for each sector .the Data structure for a sector typically consists of a header, a data

area, a trailer . the header and trailer contain information used by the disk controller

,such as a sector number and an error correcting code(ECC). When the controller

writes a sector of data during normal I/O, the ECC is updated with a value calculated

from all the bytes in the data area . when the sector is read ,the ECC is recalculated

and compared with the stored value. If the stored and calculated numbers are

different, this mismatch indicates that the data area of this sector has become

corrupted, and that the disk sector may be bad. ECC contains enough information, if

only few bits of data have been corrupted, to enable the controller to identify which

bits have changed and calculate what their correct values should be. The controller

automatically does the ECC processing what ever a sector is read/written for many

hard disks, when the disk controller is instructed to low level format the disk, it can

also be told how many bytes of data space to leave between the header and trailer of

all sectors.

Before it can use a disk to hold files , OS still needs to record its own data structures

on the disk. It does in 2 steps. The first step is to partition the disk in to one/more

groups of cylinders. OS can treat each partition as a separate disk. The second step is

logical formatting (or)creation of file system. In this step, OS stores the initial File

system data structures on to the disk. These data structures include maps of free and

allocate space and initial empty directory.

Boot block:-

When a computer is powered up -it must have an initial program to run. This initial

bootstrap program initializes all aspects of the system, from CPU registers to device

controllers, and the contents of main memory, and then starts the OS. To do its job, the

bootstrap program finds the OS kernel on disk, loads that kernel into memory and

jumps to an initial address to begin the OS execution. For most computers, the

bootstrap is stored in ROM. This location is convenient, because ROM needs no

initialization and is at a fixed location that the CPU can start executing when powered

up, ROM is read only, it cannot be infected by computer virus. The problem is that

changing this bootstrap code requires changing the ROM hardware chips. For this

reason, most systems store a tiny bootstrap loader program in the boot ROM whose job

is to bring in a full bootstrap program from disk. The full bootstrap program is stored in

the boot blocks at a fixed location on the disk. A disk that has a boot partition is called

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

128

a boot disk or system disk. The code in the boot ROM instructs the disk controller to

read the boot blocks into memory and then starts executing that code.

Bad blocks:-

A Block in the disk damaged due to the manufacturing defect or virus or physical

damage. This defector block is called Bad block. MS-DOS format command, scans the

disk to find bad blocks. If format finds a bad block, it tells the allocation methods not to

use that block. Chkdsk program search for the bad blocks and to lock them away. Data

that resided on the bad blocks usually are lost. The OS tries to read logical block 87.

The controller calculates ECC and finds that the sector is bad. It reports this finding to

the OS. The next time the system is rebooted, a special command is run to tell the

SCS controller to replace the bad sector

with a spare.

After that, whenever the system requests logical block 87, the request is translated into

the replacement sectors address by the controller.

Sector slipping:-

Logical block 17 becomes defective and the first available spare follows sector 202.

Then, sector slipping remaps all the sectors from 17 to 202, sector 202 is copied into

the spare, then sector 201 to 202, 200 to 201 and so on. Until sector 18 is copied into

sector 19. Slipping the sectors in this way frees up the space of sector 18.

Swap space management:-

System that implements swapping may use swap space to hold an entire process

image, including the code and data segments. Paging systems may simply store pages

that have been pushed out of main memory. Note that it may be safer to overestimate

than to underestimate the amount of swap space required, because if a system runs out

of swap space it may be forced to abort processes. Overestimation wastes disk space

that could otherwise be used for files, but it does no other harm. Some systems

recommend the amount to be set aside for swap space. Linux has suggested setting

swap space to double the amount of physical memory. Some OS allow the use of

multiple swap spaces. These swap spaces as put on separate disks so that load placed

on the (I/O) system by paging and swapping can be spread over the systems I/O

devices.

 OPERATING SYSTEMS NOTES II YEAR/I SEM MRCET

129

Swap space location:-

A Swap space can reside in one of two places. It can be carved out of normal file

system (or) it can be in a separate disk partition. If the swap space is simply a large file,

within the file system, normal file system methods used to create it, name it, allocate its

space. It is easy to implement but inefficient. External fragmentation can greatly

increase swapping times by forcing multiple seeks during reading/writing of a process

image. We can improve performance by caching the block location information in main

memory and by using special tools to allocate physically contiguous blocks for the

swap file. Alternatively, swap space can be created in a separate raw partition. a

separate swap space storage manager is used to allocate

/deal locate the blocks from the raw partition. this manager uses algorithms optimized

for speed rather than storage efficiency. Internal fragmentation may increase but it is

acceptable because life of data in swap space is shorter than files. since swap space is

reinitialized at boot time, any fragmentation is short lived. the raw partition approach

creates a fixed amount of swap space during disk partitioning adding more swap space

requires either repartitioning the disk (or) adding another swap space elsewhere.

	Operating system performs the following functions:
	Operating-system Operations
	Special purpose systems
	b) Multimedia Systems
	c) Hand held Systems
	Operating System Services
	System Calls
	Example of Standard API
	System Call Parameter Passing
	Types of System Calls
	System Programs
	UNIX
	Micro kernel System Structure
	Modules
	Virtual Machines
	VMware Architecture
	RATE MONOTONIC (RM) SCHEDULING ALGORITHM

	Earliest Deadline First (EDF) Scheduler Algorithm
	do {flag[i] = TRUE; turn = j;
	do {
	The structure of the consumer process
	The structure of a writer process
	The structure of a reader process
	The structure of Philosopher i:
	do{
	wait (chopstick[i]);
	wait (chopStick[(i + 1) % 5]);
	// eat
	signal (chopstick[i]);
	signal (chopstick[(i + 1) % 5]);
	// think
	} while (TRUE);
	Schematic view of a Monitor

	Resuming processes within a monitor
	Resource allocation using monitor
	Logical And Physical Addresses
	Memory-Management Unit (MMU)
	Base and Limit Registers
	Binding of Instructions and Data to Memory
	Multistep Processing of a User Program
	Dynamic Linking
	Swapping
	Schematic View of Swapping
	Hardware Support for Relocation and Limit Registers

	Internal fragmentation
	External fragmentation
	Paging
	Paging Hardware
	Free Frames
	Paging Hardware With TLB
	Memory Protection
	Valid (v) or Invalid (i) Bit In A Page Table

	Private code and data
	Shared Pages Example
	Hierarchical Page Tables
	Two-Level Page-Table Scheme
	Address-Translation Scheme
	Inverted Page Table
	Inverted Page Table Architecture
	User’s View of a Program
	Segmentation Hardware

	Segmentation with paging
	Virtual Memory
	Benefits of having Virtual Memory :
	Demand Paging

	What is dirty bit?
	Advantages of Demand Paging:
	Disadvantages of Demand Paging:
	Page Replacement

	Page Replacement Algorithm
	DATA FILE
	FILE ATTRIBUTES :
	FILE OPERATIONS
	INTERNAL FILE STRUCTURE
	FILE ACCESS METHODS
	3. Indexed Sequential File access
	OPERATION ON THE DIRECTORIES :
	2. Two level directory:
	3. Tree structured directory:
	4. Acyclic graphdirectory
	5. General graph directory:
	File system structure:
	File System Implementation:
	A Typical File Control Block
	Allocation Methods – Contiguous
	Linked
	File-Allocation Table
	Free-Space Management
	Linked Free Space List on Disk
	Counting
	Directory Implementation
	1. Linear List
	2. Hash Table

	Block Devices
	Character Devices
	Device Controllers
	Synchronous vs asynchronous I/O
	Communication to I/O Devices
	Special Instruction I/O
	Memory-mapped I/O

	Direct Memory Access (DMA)
	Device Drivers
	Interrupt handlers
	Device-Independent I/O Software
	User-Space I/O Software
	Kernel I/O Subsystem
	DEADLOCK CHARACTERIZATION:
	NECESSARY CONDITIONS:
	RESOURCE ALLOCATION GRAPH
	DEADLOCK PREVENTION
	No Preemption –
	Deadlock Avoidance
	Safe State
	Avoidance algorithms
	Resource-Allocation Graph Scheme
	Unsafe State In Resource-Allocation Graph
	Safety Algorithm
	Resource-Request Algorithm for Process Pi
	Example of Banker’s Algorithm(REFER CLASS NOTES)
	P1 Request (1,0,2)
	Deadlock Detection
	Single Instance of Each Resource Type
	Resource-Allocation Graph and Wait-for Graph
	Several Instances of a Resource Type
	Detection Algorithm
	Recovery from Deadlock:
	Resource Preemption
	Moving head disk mechanism
	Disk attachment

	A storage area network(SAN) is a private network using storage protocols connecting servers and storage units. The power of a SAN is its flexibility. multiple hosts and multiple storage arrays can attach to the same SAN, and storage can be dynamically...
	Disk Scheduling Algorithms
	1. First Come First Serve(FCFS)
	Solution:
	2. Shortest Seek Time First(SSTF):
	Solution: (1)
	3. SCAN Scheduling Algorithm
	Solution: (2)
	4 .Circular SCAN (C-SCAN)Algorithm

	Disk management
	Bad blocks:-
	Sector slipping:-
	Swap space management:-
	Swap space location:-

