Nature of Course: Theoretical + Practical Credit Hours: 3 (2T+1P) Teaching Hours: 64 (32T+32P)

1. Course Description

This course deals with computer graphics consisting of history and application of computer graphics, output primitives, geometrical transformations 2D and 3D, color models, clipping, introduction to three-dimensional graphics, projection and its types, visible surface detection algorithms, illumination model, polygon rendering methods and understanding of computer simulation, animation and virtual reality.

2. General Objectives

- To familiarize the students with computer graphics and its applications
- To understand the Input hardware and Output Hardware with architecture
- To make the students competent in implementing algorithm of graphical primitives: point, line and circle.
- To enable the students to implement two and three dimensional transformations
- To apply the students to demonstrating rendering and illumination techniques
- To know about different color models
- To understand computer animation and virtual reality.

Specific Objectives Contents to summarize key milestones in the Unit I: Computer Graphics and • history of computer graphics. 4T+3P Hardware to illustrate real-world applications of • History and Applications of • computer graphics in diverse field **Computer Graphics** to compare and contrast of raster and • Input Devices: Mouse, Keyboard, • random scan displays architecture Touch Panel, Light Pen, Digitizer, Data Glove, Bar Code, OCR, to identify the different graphical input OMR, MICR devices and output devices • Hardcopy Output Devices: Printer, to explain the working principles of CRTs • Plotter and flat-panel displays. • Display Devices: CRT (monochrome and color), LED, LCD Plasma • Architecture of Raster Scan and Random Scan System **Practical Work** Prepare Case Study Report on one or more topics mentioned below:

3. Specific Objectives and Contents

	 Touch Panel CRT LED and LCD Bar Code History and Application of Computer Graphics
 to define the concept of pixel to recall the definition of points and lines in computer graphics. to implement the DDA algorithm. to implement the Bresenham's line drawing algorithm. to utilize the Midpoint Circle algorithm to draw circle 	 Unit II: Output Primitives 6T+9P 2.1 Pixel and Straight Line 2.2 Line Drawing Algorithms: Digital Differential Analyzer (DDA), Bresenham's Line Drawing 2.3 Midpoint Circle Algorithm Practical Works Write program to draw a line using DDA algorithm. Write program to draw a line using Bresenham's line drawing algorithm. Write program to draw a circle using Midpoint circle algorithm. Write program to draw a different geometrical shapes with the help
 To define different types of 2D and 3D Transformations To represent 2D and 3D transformations in homogeneous form to generate successive and composite transformations To define viewing pipeline to apply transform objects from world coordinate to viewing coordinate 	of library functions/methods. Unit III: 2D and 3D Transformation 6T+6P 3.1 2D and 3D Transformations: Translation, Rotation (about origin and arbitrary point), Scaling (about origin and arbitrary point), Reflection and Shear 3.2 Representation of 2D and 3D Transformation in Homogeneous Coordinate System 3.3 Successive and Composite Transformations 3.4 Window to Viewport Transformations 3.5 2D and 3D Viewing Pipeline
	 Practical Works Write program to illustrate all types of 2D and 3D transformations

 to understand clipping and its need to apply point clipping to utilize Cohen-Sutherland line clipping algorithm to illustrate Sutherland-Hodgeman polygon clipping algorithm 	 Unit IV: Clipping 4T+6P=10 4.1 Introduction to Clipping 4.2 Point Clipping Cohen-Sutherland Line Clipping Algorithm 4.4 Polygon Clipping Sutherland-Hodgeman Polygon Clipping Algorithm Practical Works Write program to implement Point Clipping Cohen-Sutherland line clipping algorithm Sutherland Hodgeman Polygon Clipping 	
 to define 3D object to derive the parallel and perspective projection matrices to understand different types of visible surface detection methods to identify basic illumination models to apply polygon rendering methods to know the idea behind color models 	 Unit V: Three Dimensional Graphics 9T+5P 5.1 3D Object Representation : Polygon Table 5.2 Projection: Definition and Types, Derivation of Parallel and Perspective Projection Matrices 5.3 Visible Surface Detection Methods: Object Space (Depth Sorting) and Image Space (Z- Buffer, A-Buffer and Scanline) Methods 5.4 Basic Illumination model: Ambient Light, Specular Highlights and Diffuse Reflection 5.5 Polygon Rendering Methods: Constant, Gouraud and Phong Shading 6 RGB, HSV and CMYK Color models Practical Works Write program to create 3D object. Write program to illustrate parallel projection 	

	• Write program to illustrate perspective projection
 to understand the simulation, animation and virtual reality concept to make use of animation tool 	 Unit VI: Computer Simulation, Animation and Virtual Reality 3T+3P 6.1 Introduction to Computer Animation 6.3 Introduction to Simulation 6.4 Introduction of Virtual Reality Practical Works Use Animation tool to create simple animated video

4. Instructional Techniques

The instructional techniques for this course are divided into two groups. First group consists of general instructional techniques applicable to most of the units. The second group consists of specific instructional techniques applicable to specific units.

5.1 General Techniques

- Providing the reading materials to the students to familiarize the units.
- Lecture, question-answer, discussion, brainstorming, practical, and buzz session.

5.2 Specific Instructional Techniques

5. Evaluation

Evaluation of students' performance is divided into parts: Internal assessment and internal and external practical examination and theoretical examinations. The distribution of points is given below:

Internal	External Practical	Semester Examination	Total Points
Assessment	Exam/Viva	(Theoretical exam)	
40 Points	20 Points	40 Points	100 Points

Note: Students must pass separately in internal assessment, external practical exam and semester examination.

5.1 Internal Assessment (40 Points)

Internal assessment will be conducted by subject teacher based on following criteria:

- 1) Class Attendance5 points2) Learning activities and class performance5 points
- 3) First assignment (written assignment) 10 points
- 4) Second assignment (Case Study/project work with presentation) 10 points

5) Terminal Examination	10 Points	
Total	40 points	
5.2 Semester Examination (40 Points)		
Examination Division, Dean office will conduct final examination at the end of semester.		
Objective question (Multiple choice questions 10 x 1 point) 10 Points		
Short answer questions (6 questions x 5 mar	ks) 30 Points	
Total	40 points	

5.3 Practical Exam/Viva (20 Points)

Examination Division, Dean Office will conduct final practical examination at the end of semester. Practical record book, practical written test, demonstration of practical activities and viva are assessment indicators.

6. Prescribed Textbook

Hearn and Baker, "Computer Graphics, C Version", Second Edition, Prentice- Hall of India Private Limited, 2003

7. Recommended Books and References

- 1. Edward Angel and Dave Shreiner Interactive Computer Graphics A Top-Down Approach With Shader-Based OPENGL, 6th edition ISBN-13: 978-0-13-254523-5
- 2. Peter Shirley and Steve Marschner ,*Fundamentals of Computer Graphics*, Third Edition CRC Press Taylor & Francis Group 13: 978-1-4398-6552-1
- 3. Issac Victor Kerlow, The Art of 3D Computer Animation and Effects, John Wiley, 2004, ISBN:0471430366.