
Unit 1: Concept of Object Oriented Programming (OOP)

1.1 Programming Languages and Software Crisis

Programming Languages: Tools used by developers to write instructions that a computer can

execute. Examples include C, C++, Java, Python, etc.

 Low-Level Languages: Machine language and assembly language.

 High-Level Languages: Procedural (C, Pascal), functional (LISP, Haskell), object-

oriented (C++, Java), scripting (Python, JavaScript), and more.

Software Crisis: Refers to the difficulties in writing correct, understandable, and verifiable

computer programs. Issues included increasing complexity, costs, and delays in software

projects.

Challenges included:

o High costs and long development times.

o Poor quality and reliability.

o Difficulty in managing large projects.

o Maintenance issues.

1.2 Procedure Vs Object-Oriented Programming Language

C++ was devised by Bjarne Stroustrup in early 1980’s (1983 A.D.) at Bell

Laboratories. It is an extension of C by adding some enhancements specially addition

of class into C language. So, it is also called as superset of C. Initial it was called as C

with class. The main difference between C and C++ is that C++ is an object oriented

while C is function or procedure oriented. Object oriented programming paradigm is

focused on writing programs that are more readable and maintainable. It also helps the

reuse of code by packaging a group of similar objects or using the concept of

component programming model. It helps thinking in a logical way by using the

concept of real world concept of objects, inheritance and polymorphism. It should be

noted that there are also some drawbacks of such features. For example, using

polymorphism in a program can slow down the performance of that program. On the

other hand, functional and procedural programming focus primarily on the action and

events, and the programming model focus on the logical assertions that trigger

execution of program code.

 Procedural Programming: Focuses on functions or procedures to operate on data. Examples

include C and Pascal.

 Key Concepts: Functions, top-down design, and flowcharts.

 Focuses on functions or procedures.

 Follows a top-down approach.

 Data is separate from functions.

 Examples: C, Pascal, COBOL, FORTRAN.

 Object-Oriented Programming (OOP): Focuses on objects that encapsulate data and

behavior.

 Key Concepts: Classes, objects, inheritance, polymorphism, encapsulation, and

abstraction.

 Focuses on objects which encapsulate data and functions.

 Follows a bottom-up approach.

 Promotes data hiding and abstraction.

 Examples: C++, Java, Python.

1.3 Features of Object-Oriented Programming

1. Class and Object: Basic units of OOP. A class defines a type, and an object is an

instance of a class.

2. Encapsulation: Bundling data with the methods that operate on that data. Binding (or

wrapping) code and data together into a single unit is known as encapsulation. For

example: capsule, it is wrapped with different medicines. The wrapping up of data and

functions into a single unit is called Encapsulation.

3. Abstraction: Hiding complex implementation details and showing only the necessary

features. Hiding internal details and showing functionality is known as abstraction.

4. Inheritance: Mechanism by which one class inherits properties and behaviors from

another. It is the process by which objects of one class acquire the properties of another

class. It supports the concept of hierarchical classification. In OOL, the concept of

inheritance provides idea of reusability.

5. Polymorphism: Ability to take many forms. Methods to operate on objects of different

classes through a common interface.

1.4 Popular Object-Oriented Programming Languages and Features

C++:

 Combines procedural and object-oriented features.

 Supports operator overloading, multiple inheritance.

Java:

 Purely object-oriented.

 Platform-independent due to Java Virtual Machine (JVM).

 Automatic garbage collection.

Python:

 Supports multiple programming paradigms.

 Dynamic typing and memory management.

 Easy to read and write.

1.5 Advantages and Disadvantages of OOP

 Benefits of using OOP:

 OOP offers several benefits to both the program designer and the user. Object orientation

programming promises greater programmer productivity, better quality of software and lesser

maintenance cost. The principle advantages are:

 • Through inheritance, we can eliminate redundant code & extend the use of existing

classes.

• Reusability saves the development time and helps in higher productivity.

• It is possible to map objects in the problem domain to those in the program.

• It is easy to partition the work in a project based on objects.

 • Object oriented systems can be easily upgraded from small to large system. • Software

complexity can be easily managed

 Advantages:
 Modularity: Easier to manage and understand.

 Reusability: Code can be reused through inheritance. Reusability through inheritance.

 Maintainability: Easier to update and modify. Improved software maintainability.

 Scalability: Better handling of complex and large systems.

 Disadvantages:
 Complexity: Can be more complex than procedural programming.

 Performance: Sometimes slower due to abstraction. Slower execution compared to

procedural programming in some cases.

 Learning Curve: Steeper for beginners.

1.6 Introduction of C++ and Compilers

C++: An extension of C with object-oriented features. Used for system/software development.

 Developed by Bjarne Stroustrup in 1983.

 Extension of the C language with object-oriented features.

 Commonly used for system/software development, game programming.

Compilers: Translate C++ code into executable programs. Examples include GCC, Clang, and

Microsoft Visual C++.

 Translate source code into machine code.

 Examples: GCC (GNU Compiler Collection), Clang, Microsoft Visual C++.

The data of an object can be accessed only by the function associated with that object. However,
functions of one object can access the function of other objects.

1.7 Programming Structure in C++

1. Header Files: Libraries to include.

2. Main Function: Entry point of the program.

3. Classes and Objects: Fundamental building blocks in OOP.

4. Member Functions: Methods within a class.

5. Access Specifiers: Public, private, and protected sections.

Structure:

 Include Directives: #include <iostream>

 Namespace: using namespace std;

 Main Function: int main() { // code }

 Statements and Expressions

Example:

#include <iostream>

using namespace std;

int main() {

 cout << "Hello, World!" << endl;

 return 0;

}

C++ Program

Before starting the abcd of C++ language, you need to learn how to write, compile and

run the first C++ program.

To write the first C++ program, open the C++ console and write the following code:

#include <iostream>

using namespace std;

int main() {

 int x;

 cout << "Type a number: "; // Type a number and press enter

 cin >> x; // Get user input from the keyboard

 cout << "Your number is: " << x;

 return 0;

}

Omitting Namespace

The using namespace std line can be omitted and replaced with

the std keyword, followed by the :: operator for some objects:

#include <iostream>

int main() {

 std::cout << "Hello World!";

 return 0;

}

Addition of two numbers in C++ program

#include<iostream>//library

//using namespace std;//namspace

int main()//main function

{

 int a,b,sum;//declaration

 std::cout<<"enter two numbers"<<std::endl;

 std::cin>>a>>b;//input from user

 sum=a+b;//process

 std::cout<<"sum is "<<sum;//print on the console

 return 0; //does not return null value

}

1.8 Comparison of C and C++

 C:

 Procedural language.

 Functions and variables are the main building blocks.No built-in support for OOP: Does

not support classes and objects

 Supports functions and pointers.

C++:

 Supports both procedural and object-oriented programming.

 Has features of classes, objects, inheritance, and polymorphism.

 Supports features like function overloading, function overloading, templates, and

exceptions.

1.9 Additional Data Types, Token in C++

 Data Types:

 Fundamental: int, char, float, double, void.

 Derived: arrays, pointers, references.

 User-defined: classes, structures, unions, enumerations.

 Tokens:

 Keywords: Reserved words with special meaning(e.g., int, class, return)..

 Identifiers: Names given to variables, functions, etc.

 Constants: Fixed values.

 Operators: Symbols that perform operations(e.g., +, *, ==)..

 Separators/ Punctuators: Symbols that organize code like semicolons, braces,

commas(e.g., {}, ;).

1.10 Insertion and Extraction Operators

Insertion Operator (<<): Used to output data to the console.

cout << "Hello, World!";

 Used to output data to streams (e.g., std::cout).

 Example: std::cout << "Hello, World!" << std::endl;

Extraction Operator (>>): Used to input data from the console.

int x;

cin >> x;

 Used to input data from streams (e.g., std::cin).

 Example: std::cin >> userInput;

	Unit 1: Concept of Object Oriented Programming (OOP)
	1.1 Programming Languages and Software Crisis
	1.2 Procedure Vs Object-Oriented Programming Language
	C++ was devised by Bjarne Stroustrup in early 1980’s (1983 A.D.) at Bell Laboratories. It is an extension of C by adding some enhancements specially addition of class into C language. So, it is also called as superset of C. Initial it was called as C ...
	1.3 Features of Object-Oriented Programming
	5. Polymorphism: Ability to take many forms. Methods to operate on objects of different classes through a common interface.
	1.4 Popular Object-Oriented Programming Languages and Features
	1.5 Advantages and Disadvantages of OOP
	1.6 Introduction of C++ and Compilers
	1.7 Programming Structure in C++
	C++ Program

	Omitting Namespace
	1.8 Comparison of C and C++
	1.9 Additional Data Types, Token in C++
	1.10 Insertion and Extraction Operators

